Formula of the reduced quadratic equation at d 0. Square root: calculation formulas

With this math program you can solve quadratic equation.

The program not only gives the answer to the problem, but also displays the solution process in two ways:
- using the discriminant
- using the Vieta theorem (if possible).

Moreover, the answer is displayed exact, not approximate.
For example, for the equation \(81x^2-16x-1=0\), the answer is displayed in this form:

$$ x_1 = \frac(8+\sqrt(145))(81), \quad x_2 = \frac(8-\sqrt(145))(81) $$ instead of this: \(x_1 = 0.247; \quad x_2 = -0.05 \)

This program May be useful for high school students general education schools in preparation for control work and exams, when testing knowledge before the exam, parents to control the solution of many problems in mathematics and algebra. Or maybe it's too expensive for you to hire a tutor or buy new textbooks? Or do you just want to get it done as soon as possible? homework math or algebra? In this case, you can also use our programs with a detailed solution.

In this way, you can conduct your own training and/or the training of your younger brothers or sisters, while the level of education in the field of tasks to be solved is increased.

If you are not familiar with the rules for entering a square polynomial, we recommend that you familiarize yourself with them.

Rules for entering a square polynomial

Any Latin letter can act as a variable.
For example: \(x, y, z, a, b, c, o, p, q \) etc.

Numbers can be entered as integers or fractions.
Moreover, fractional numbers can be entered not only in the form of a decimal, but also in the form of an ordinary fraction.

Rules for entering decimal fractions.
In decimal fractions, the fractional part from the integer can be separated by either a dot or a comma.
For example, you can enter decimals so: 2.5x - 3.5x^2

Rules for entering ordinary fractions.
Only a whole number can act as the numerator, denominator and integer part of a fraction.

The denominator cannot be negative.

When entering a numerical fraction, the numerator is separated from the denominator by a division sign: /
whole part separated from the fraction by an ampersand: &
Input: 3&1/3 - 5&6/5z +1/7z^2
Result: \(3\frac(1)(3) - 5\frac(6)(5) z + \frac(1)(7)z^2 \)

When entering an expression you can use brackets. In this case, when solving a quadratic equation, the introduced expression is first simplified.
For example: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Solve

It was found that some scripts needed to solve this task were not loaded, and the program may not work.
You may have AdBlock enabled.
In this case, disable it and refresh the page.

You have JavaScript disabled in your browser.
JavaScript must be enabled for the solution to appear.
Here are instructions on how to enable JavaScript in your browser.

Because There are a lot of people who want to solve the problem, your request is queued.
After a few seconds, the solution will appear below.
Please wait sec...


If you noticed an error in the solution, then you can write about it in the Feedback Form .
Do not forget indicate which task you decide what enter in the fields.



Our games, puzzles, emulators:

A bit of theory.

Quadratic equation and its roots. Incomplete quadratic equations

Each of the equations
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac(4)(9)=0 \)
has the form
\(ax^2+bx+c=0, \)
where x is a variable, a, b and c are numbers.
In the first equation a = -1, b = 6 and c = 1.4, in the second a = 8, b = -7 and c = 0, in the third a = 1, b = 0 and c = 4/9. Such equations are called quadratic equations.

Definition.
quadratic equation an equation of the form ax 2 +bx+c=0 is called, where x is a variable, a, b and c are some numbers, and \(a \neq 0 \).

The numbers a, b and c are the coefficients of the quadratic equation. The number a is called the first coefficient, the number b is the second coefficient and the number c is the intercept.

In each of the equations of the form ax 2 +bx+c=0, where \(a \neq 0 \), the largest power of the variable x is a square. Hence the name: quadratic equation.

Note that a quadratic equation is also called an equation of the second degree, since its left side is a polynomial of the second degree.

A quadratic equation in which the coefficient at x 2 is 1 is called reduced quadratic equation. For example, the given quadratic equations are the equations
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

If in the quadratic equation ax 2 +bx+c=0 at least one of the coefficients b or c zero, then this equation is called incomplete quadratic equation. So, the equations -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 are incomplete quadratic equations. In the first of them b=0, in the second c=0, in the third b=0 and c=0.

Incomplete quadratic equations are of three types:
1) ax 2 +c=0, where \(c \neq 0 \);
2) ax 2 +bx=0, where \(b \neq 0 \);
3) ax2=0.

Consider the solution of equations of each of these types.

To solve an incomplete quadratic equation of the form ax 2 +c=0 for \(c \neq 0 \), its free term is transferred to right side and divide both sides of the equation by a:
\(x^2 = -\frac(c)(a) \Rightarrow x_(1,2) = \pm \sqrt( -\frac(c)(a)) \)

Since \(c \neq 0 \), then \(-\frac(c)(a) \neq 0 \)

If \(-\frac(c)(a)>0 \), then the equation has two roots.

If \(-\frac(c)(a) To solve an incomplete quadratic equation of the form ax 2 +bx=0 for \(b \neq 0 \) factorize its left side and obtain the equation
\(x(ax+b)=0 \Rightarrow \left\( \begin(array)(l) x=0 \\ ax+b=0 \end(array) \right. \Rightarrow \left\( \begin (array)(l) x=0 \\ x=-\frac(b)(a) \end(array) \right. \)

Hence, an incomplete quadratic equation of the form ax 2 +bx=0 for \(b \neq 0 \) always has two roots.

An incomplete quadratic equation of the form ax 2 \u003d 0 is equivalent to the equation x 2 \u003d 0 and therefore has a single root 0.

The formula for the roots of a quadratic equation

Let us now consider how quadratic equations are solved in which both coefficients of the unknowns and the free term are nonzero.

We solve the quadratic equation in general view and as a result we get the formula of the roots. Then this formula can be applied to solve any quadratic equation.

Solve the quadratic equation ax 2 +bx+c=0

Dividing both its parts by a, we obtain the equivalent reduced quadratic equation
\(x^2+\frac(b)(a)x +\frac(c)(a)=0 \)

We transform this equation by highlighting the square of the binomial:
\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2- \left(\frac(b)(2a)\right)^ 2 + \frac(c)(a) = 0 \Rightarrow \)

\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2 = \left(\frac(b)(2a)\right)^ 2 - \frac(c)(a) \Rightarrow \) \(\left(x+\frac(b)(2a)\right)^2 = \frac(b^2)(4a^2) - \frac( c)(a) \Rightarrow \left(x+\frac(b)(2a)\right)^2 = \frac(b^2-4ac)(4a^2) \Rightarrow \) \(x+\frac(b )(2a) = \pm \sqrt( \frac(b^2-4ac)(4a^2) ) \Rightarrow x = -\frac(b)(2a) + \frac( \pm \sqrt(b^2 -4ac) )(2a) \Rightarrow \) \(x = \frac( -b \pm \sqrt(b^2-4ac) )(2a) \)

The root expression is called discriminant of a quadratic equation ax 2 +bx+c=0 (“discriminant” in Latin - distinguisher). It is denoted by the letter D, i.e.
\(D = b^2-4ac\)

Now, using the notation of the discriminant, we rewrite the formula for the roots of the quadratic equation:
\(x_(1,2) = \frac( -b \pm \sqrt(D) )(2a) \), where \(D= b^2-4ac \)

It's obvious that:
1) If D>0, then the quadratic equation has two roots.
2) If D=0, then the quadratic equation has one root \(x=-\frac(b)(2a)\).
3) If D Thus, depending on the value of the discriminant, the quadratic equation can have two roots (for D > 0), one root (for D = 0) or no roots (for D When solving a quadratic equation using this formula, it is advisable to do the following way:
1) calculate the discriminant and compare it with zero;
2) if the discriminant is positive or equal to zero, then use the root formula if discriminant is negative, then write that there are no roots.

Vieta's theorem

The given quadratic equation ax 2 -7x+10=0 has roots 2 and 5. The sum of the roots is 7, and the product is 10. We see that the sum of the roots is equal to the second coefficient, taken with the opposite sign, and the product of the roots is equal to the free term. Any reduced quadratic equation that has roots has this property.

The sum of the roots of the given quadratic equation is equal to the second coefficient, taken with the opposite sign, and the product of the roots is equal to the free term.

Those. Vieta's theorem states that the roots x 1 and x 2 of the reduced quadratic equation x 2 +px+q=0 have the property:
\(\left\( \begin(array)(l) x_1+x_2=-p \\ x_1 \cdot x_2=q \end(array) \right. \)

A quadratic equation is an equation of the form a*x^2 +b*x+c=0, where a,b,c are some arbitrary real (real) numbers, and x is a variable. And the number a=0.

The numbers a,b,c are called coefficients. The number a - is called the leading coefficient, the number b is the coefficient at x, and the number c is called the free member.

Solving quadratic equations

To solve a quadratic equation means to find all its roots, or to establish the fact that the quadratic equation has no roots. The root of the quadratic equation a * x ^ 2 + b * x + c \u003d 0 is any value of the variable x, such that the square trinomial a * x ^ 2 + b * x + c vanishes. Sometimes such a value of x is called the root of a square trinomial.

There are several ways to solve quadratic equations. Consider one of them - the most versatile. It can be used to solve any quadratic equation.

Formulas for solving quadratic equations

The formula for the roots of the quadratic equation is a*x^2 +b*x+c=0.

x=(-b±√D)/(2*a), where D =b^2-4*a*c.

This formula is obtained by solving the equation a * x ^ 2 + b * x + c \u003d 0 in general form, by highlighting the square of the binomial.

In the formula of the roots of a quadratic equation, the expression D (b^2-4*a*c) is called the discriminant of the quadratic equation a*x^2 +b*x+c=0. This name came from Latin, in translation "distinguisher". Depending on the value of the discriminant, the quadratic equation will have two or one root, or no roots at all.

If the discriminant is greater than zero, then the quadratic equation has two roots. (x=(-b±√D)/(2*a))

If the discriminant is zero, then the quadratic equation has one root. (x=(-b/(2*a))

If the discriminant is negative, then the quadratic equation has no roots.

General algorithm for solving a quadratic equation

Based on the foregoing, we formulate a general algorithm for solving the quadratic equation a*x^2 +b*x+c=0 using the formula:

1. Find the value of the discriminant using the formula D =b^2-4*a*c.

2. Depending on the value of the discriminant, calculate the roots using the formulas:

D<0, корней нет.

D=0, x=(-b/(2*a)

D>0, x=(-b+√D)/(2*a), x=(-b-√D)/(2*a)

This algorithm is universal and suitable for solving any quadratic equations. Complete and incomplete, cited and not cited.

Quadratic equations. Discriminant. Solution, examples.

Attention!
There are additional
material in Special Section 555.
For those who strongly "not very..."
And for those who "very much...")

Types of quadratic equations

What is a quadratic equation? What does it look like? In term quadratic equation keyword is "square". It means that in the equation necessarily there must be an x ​​squared. In addition to it, in the equation there may be (or may not be!) Just x (to the first degree) and just a number (free member). And there should not be x's in a degree greater than two.

In mathematical terms, a quadratic equation is an equation of the form:

Here a, b and c- some numbers. b and c- absolutely any, but but- anything but zero. For example:

Here but =1; b = 3; c = -4

Here but =2; b = -0,5; c = 2,2

Here but =-3; b = 6; c = -18

Well, you get the idea...

In these quadratic equations, on the left, there is full set members. x squared with coefficient but, x to the first power with coefficient b And free member of

Such quadratic equations are called complete.

And if b= 0, what will we get? We have X will disappear in the first degree. This happens from multiplying by zero.) It turns out, for example:

5x 2 -25 = 0,

2x 2 -6x=0,

-x 2 +4x=0

Etc. And if both coefficients b And c are equal to zero, then it is even simpler:

2x 2 \u003d 0,

-0.3x 2 \u003d 0

Such equations, where something is missing, are called incomplete quadratic equations. Which is quite logical.) Please note that x squared is present in all equations.

By the way why but can't be zero? And you substitute instead but zero.) The X in the square will disappear! The equation will become linear. And it's done differently...

That's all the main types of quadratic equations. Complete and incomplete.

Solution of quadratic equations.

Solution of complete quadratic equations.

Quadratic equations are easy to solve. According to formulas and clear simple rules. At the first stage, you need behind given equation lead to standard view, i.e. to the view:

If the equation is already given to you in this form, you do not need to do the first stage.) The main thing is to correctly determine all the coefficients, but, b And c.

The formula for finding the roots of a quadratic equation looks like this:

The expression under the root sign is called discriminant. But more about him below. As you can see, to find x, we use only a, b and c. Those. coefficients from the quadratic equation. Just carefully substitute the values a, b and c into this formula and count. Substitute with your signs! For example, in the equation:

but =1; b = 3; c= -4. Here we write:

Example almost solved:

This is the answer.

Everything is very simple. And what do you think, you can't go wrong? Well, yes, how...

The most common mistakes are confusion with the signs of values a, b and c. Or rather, not with their signs (where is there to be confused?), But with the substitution of negative values ​​​​into the formula for calculating the roots. Here, a detailed record of the formula with specific numbers saves. If there are problems with calculations, so do it!

Suppose we need to solve the following example:

Here a = -6; b = -5; c = -1

Let's say you know that you rarely get answers the first time.

Well, don't be lazy. It will take 30 seconds to write an extra line. And the number of errors will drop sharply. So we write in detail, with all the brackets and signs:

It seems incredibly difficult to paint so carefully. But it only seems. Try it. Well, or choose. Which is better, fast, or right? Besides, I will make you happy. After a while, there will be no need to paint everything so carefully. It will just turn out right. Especially if you apply practical techniques, which are described below. This evil example with a bunch of minuses will be solved easily and without errors!

But, often, quadratic equations look slightly different. For example, like this:

Did you know?) Yes! This incomplete quadratic equations.

Solution of incomplete quadratic equations.

They can also be solved by the general formula. You just need to correctly figure out what is equal here a, b and c.

Realized? In the first example a = 1; b = -4; but c? It doesn't exist at all! Well, yes, that's right. In mathematics, this means that c = 0 ! That's all. Substitute zero into the formula instead of c, and everything will work out for us. Similarly with the second example. Only zero we don't have here from, but b !

But incomplete quadratic equations can be solved much easier. Without any formulas. Consider the first incomplete equation. What can be done on the left side? You can take the X out of brackets! Let's take it out.

And what of it? And the fact that the product is equal to zero if, and only if any of the factors is equal to zero! Don't believe? Well, then come up with two non-zero numbers that, when multiplied, will give zero!
Does not work? Something...
Therefore, we can confidently write: x 1 = 0, x 2 = 4.

Everything. These will be the roots of our equation. Both fit. When substituting any of them into the original equation, we get the correct identity 0 = 0. As you can see, the solution is much simpler than the general formula. I note, by the way, which X will be the first, and which the second - it is absolutely indifferent. Easy to write in order x 1- whichever is less x 2- that which is more.

The second equation can also be easily solved. We move 9 to the right side. We get:

It remains to extract the root from 9, and that's it. Get:

also two roots . x 1 = -3, x 2 = 3.

This is how all incomplete quadratic equations are solved. Either by taking X out of brackets, or by simply transferring the number to the right, followed by extracting the root.
It is extremely difficult to confuse these methods. Simply because in the first case you will have to extract the root from X, which is somehow incomprehensible, and in the second case there is nothing to take out of brackets ...

Discriminant. Discriminant formula.

Magic word discriminant ! A rare high school student has not heard this word! The phrase “decide through the discriminant” is reassuring and reassuring. Because there is no need to wait for tricks from the discriminant! It is simple and trouble-free to use.) I remind you of the most general formula for solving any quadratic equations:

The expression under the root sign is called the discriminant. The discriminant is usually denoted by the letter D. Discriminant formula:

D = b 2 - 4ac

And what is so special about this expression? Why did it deserve special name? What meaning of the discriminant? After all -b, or 2a in this formula they don’t specifically name ... Letters and letters.

The point is this. When solving a quadratic equation using this formula, it is possible only three cases.

1. The discriminant is positive. This means that you can extract the root from it. Whether the root is extracted well or badly is another question. It is important what is extracted in principle. Then your quadratic equation has two roots. Two different solutions.

2. The discriminant is zero. Then you have one solution. Since adding or subtracting zero in the numerator does not change anything. Strictly speaking, this is not a single root, but two identical. But, in simplified version, it is customary to talk about one solution.

3. The discriminant is negative. A negative number does not take the square root. Well, okay. This means there are no solutions.

To be honest, at simple solution quadratic equations, the concept of discriminant is not particularly required. We substitute the values ​​​​of the coefficients in the formula, and we consider. There everything turns out by itself, and two roots, and one, and not a single one. However, when solving more complex tasks, without knowledge meaning and discriminant formula not enough. Especially - in equations with parameters. Such equations are aerobatics for the GIA and the Unified State Examination!)

So, how to solve quadratic equations through the discriminant you remembered. Or learned, which is also not bad.) You know how to correctly identify a, b and c. Do you know how carefully substitute them into the root formula and carefully count the result. Did you understand that keyword here - carefully?

Now take note of the practical techniques that dramatically reduce the number of errors. The very ones that are due to inattention ... For which it is then painful and insulting ...

First reception . Do not be lazy before solving a quadratic equation to bring it to a standard form. What does this mean?
Suppose, after any transformations, you get the following equation:

Do not rush to write the formula of the roots! You will almost certainly mix up the odds a, b and c. Build the example correctly. First, x squared, then without a square, then a free member. Like this:

And again, do not rush! The minus before the x squared can upset you a lot. Forgetting it is easy... Get rid of the minus. How? Yes, as taught in the previous topic! We need to multiply the whole equation by -1. We get:

And now you can safely write down the formula for the roots, calculate the discriminant and complete the example. Decide on your own. You should end up with roots 2 and -1.

Second reception. Check your roots! According to Vieta's theorem. Don't worry, I'll explain everything! Checking last thing the equation. Those. the one by which we wrote down the formula of the roots. If (as in this example) the coefficient a = 1, check the roots easily. It is enough to multiply them. You should get a free term, i.e. in our case -2. Pay attention, not 2, but -2! free member with your sign . If it didn’t work out, it means they already messed up somewhere. Look for an error.

If it worked out, you need to fold the roots. Last and final check. Should be a ratio b from opposite sign. In our case -1+2 = +1. A coefficient b, which is before the x, is equal to -1. So, everything is right!
It is a pity that it is so simple only for examples where x squared is pure, with a coefficient a = 1. But at least check in such equations! Everything less mistakes will.

Reception third . If your equation has fractional coefficients, get rid of the fractions! Multiply the equation by the common denominator as described in the lesson "How to solve equations? Identity transformations". When working with fractions, errors, for some reason, climb ...

By the way, I promised an evil example with a bunch of minuses to simplify. Please! Here he is.

In order not to get confused in the minuses, we multiply the equation by -1. We get:

That's all! Deciding is fun!

So let's recap the topic.

Practical Tips:

1. Before solving, we bring the quadratic equation to the standard form, build it right.

2. If there is a square in front of the x negative coefficient, eliminate it by multiplying the entire equation by -1.

3. If the coefficients are fractional, we eliminate the fractions by multiplying the entire equation by the corresponding factor.

4. If x squared is pure, the coefficient for it is equal to one, the solution can be easily checked by Vieta's theorem. Do it!

Now you can decide.)

Solve Equations:

8x 2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Answers (in disarray):

x 1 = 0
x 2 = 5

x 1.2 =2

x 1 = 2
x 2 \u003d -0.5

x - any number

x 1 = -3
x 2 = 3

no solutions

x 1 = 0.25
x 2 \u003d 0.5

Does everything fit? Fine! Quadratic equations are not your headache. The first three turned out, but the rest did not? Then the problem is not in quadratic equations. The problem is in identical transformations of equations. Take a look at the link, it's helpful.

Doesn't quite work? Or does it not work at all? Then Section 555 will help you. There, all these examples are sorted by bones. Showing main errors in the solution. Of course, we also talk about the application of identical transformations in the solution various equations. Helps a lot!

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Learning - with interest!)

you can get acquainted with functions and derivatives.

First level

Quadratic equations. Comprehensive guide (2019)

In the term "quadratic equation" the key word is "quadratic". This means that the equation must necessarily contain a variable (the same X) in the square, and at the same time there should not be Xs in the third (or greater) degree.

The solution of many equations is reduced to the solution of quadratic equations.

Let's learn to determine that we have a quadratic equation, and not some other.

Example 1

Get rid of the denominator and multiply each term of the equation by

Let's move everything to the left side and arrange the terms in descending order of powers of x

Now we can say with confidence that this equation is quadratic!

Example 2

Multiply the left and right sides by:

This equation, although it was originally in it, is not a square!

Example 3

Let's multiply everything by:

Scary? The fourth and second degrees ... However, if we make a replacement, we will see that we have a simple quadratic equation:

Example 4

It seems to be, but let's take a closer look. Let's move everything to the left side:

You see, it has shrunk - and now it's a simple linear equation!

Now try to determine for yourself which of the following equations are quadratic and which are not:

Examples:

Answers:

  1. square;
  2. square;
  3. not square;
  4. not square;
  5. not square;
  6. square;
  7. not square;
  8. square.

Mathematicians conditionally divide all quadratic equations into the following types:

  • Complete quadratic equations- equations in which the coefficients and, as well as the free term c, are not equal to zero (as in the example). In addition, among the complete quadratic equations, there are given are equations in which the coefficient (the equation from example one is not only complete, but also reduced!)
  • Incomplete quadratic equations- equations in which the coefficient and or free term c are equal to zero:

    They are incomplete because some element is missing from them. But the equation must always contain x squared !!! Otherwise, it will no longer be a quadratic, but some other equation.

Why did they come up with such a division? It would seem that there is an X squared, and okay. Such a division is due to the methods of solution. Let's consider each of them in more detail.

Solving incomplete quadratic equations

First, let's focus on solving incomplete quadratic equations - they are much simpler!

Incomplete quadratic equations are of types:

  1. , in this equation the coefficient is equal.
  2. , in this equation the free term is equal to.
  3. , in this equation the coefficient and the free term are equal.

1. i. Since we know how to take the square root, let's express from this equation

The expression can be either negative or positive. A squared number cannot be negative, because when multiplying two negative or two positive numbers, the result will always be positive number, so: if, then the equation has no solutions.

And if, then we get two roots. These formulas do not need to be memorized. The main thing is that you should always know and remember that it cannot be less.

Let's try to solve some examples.

Example 5:

Solve the Equation

Now it remains to extract the root from the left and right parts. After all, do you remember how to extract the roots?

Answer:

Never forget about roots with a negative sign!!!

Example 6:

Solve the Equation

Answer:

Example 7:

Solve the Equation

Ouch! The square of a number cannot be negative, which means that the equation

no roots!

For such equations in which there are no roots, mathematicians came up with a special icon - (empty set). And the answer can be written like this:

Answer:

Thus, this quadratic equation has two roots. There are no restrictions here, since we did not extract the root.
Example 8:

Solve the Equation

Let's take the common factor out of brackets:

In this way,

This equation has two roots.

Answer:

The simplest type of incomplete quadratic equations (although they are all simple, right?). Obviously, this equation always has only one root:

Here we will do without examples.

Solving complete quadratic equations

We remind you that the complete quadratic equation is an equation of the form equation where

Solving full quadratic equations is a bit more complicated (just a little bit) than those given.

Remember, any quadratic equation can be solved using the discriminant! Even incomplete.

The rest of the methods will help you do it faster, but if you have problems with quadratic equations, first master the solution using the discriminant.

1. Solving quadratic equations using the discriminant.

Solving quadratic equations in this way is very simple, the main thing is to remember the sequence of actions and a couple of formulas.

If, then the equation has a root Special attention draw a step. The discriminant () tells us the number of roots of the equation.

  • If, then the formula at the step will be reduced to. Thus, the equation will have only a root.
  • If, then we will not be able to extract the root of the discriminant at the step. This indicates that the equation has no roots.

Let's go back to our equations and look at a few examples.

Example 9:

Solve the Equation

Step 1 skip.

Step 2

Finding the discriminant:

So the equation has two roots.

Step 3

Answer:

Example 10:

Solve the Equation

The equation is in standard form, so Step 1 skip.

Step 2

Finding the discriminant:

So the equation has one root.

Answer:

Example 11:

Solve the Equation

The equation is in standard form, so Step 1 skip.

Step 2

Finding the discriminant:

This means that we will not be able to extract the root from the discriminant. There are no roots of the equation.

Now we know how to write down such answers correctly.

Answer: no roots

2. Solution of quadratic equations using the Vieta theorem.

If you remember, then there is such a type of equations that are called reduced (when the coefficient a is equal to):

Such equations are very easy to solve using Vieta's theorem:

The sum of the roots given quadratic equation is equal, and the product of the roots is equal.

Example 12:

Solve the Equation

This equation is suitable for solution using Vieta's theorem, because .

The sum of the roots of the equation is, i.e. we get the first equation:

And the product is:

Let's create and solve the system:

  • And. The sum is;
  • And. The sum is;
  • And. The amount is equal.

and are the solution of the system:

Answer: ; .

Example 13:

Solve the Equation

Answer:

Example 14:

Solve the Equation

The equation is reduced, which means:

Answer:

QUADRATIC EQUATIONS. AVERAGE LEVEL

What is a quadratic equation?

In other words, a quadratic equation is an equation of the form, where - unknown, - some numbers, moreover.

The number is called the highest or first coefficient quadratic equation, - second coefficient, but - free member.

Why? Because if, the equation will immediately become linear, because will disappear.

In this case, and can be equal to zero. In this stool equation is called incomplete. If all the terms are in place, that is, the equation is complete.

Solutions to various types of quadratic equations

Methods for solving incomplete quadratic equations:

To begin with, we will analyze the methods for solving incomplete quadratic equations - they are simpler.

The following types of equations can be distinguished:

I. , in this equation the coefficient and the free term are equal.

II. , in this equation the coefficient is equal.

III. , in this equation the free term is equal to.

Now consider the solution of each of these subtypes.

Obviously, this equation always has only one root:

A number squared cannot be negative, because when multiplying two negative or two positive numbers, the result will always be a positive number. That's why:

if, then the equation has no solutions;

if we have two roots

These formulas do not need to be memorized. The main thing to remember is that it cannot be less.

Examples:

Solutions:

Answer:

Never forget about roots with a negative sign!

The square of a number cannot be negative, which means that the equation

no roots.

To briefly write that the problem has no solutions, we use the empty set icon.

Answer:

So, this equation has two roots: and.

Answer:

Let's take the common factor out of brackets:

The product is equal to zero if at least one of the factors is equal to zero. This means that the equation has a solution when:

So, this quadratic equation has two roots: and.

Example:

Solve the equation.

Solution:

We factorize the left side of the equation and find the roots:

Answer:

Methods for solving complete quadratic equations:

1. Discriminant

Solving quadratic equations in this way is easy, the main thing is to remember the sequence of actions and a couple of formulas. Remember, any quadratic equation can be solved using the discriminant! Even incomplete.

Did you notice the root of the discriminant in the root formula? But the discriminant can be negative. What to do? We need to pay special attention to step 2. The discriminant tells us the number of roots of the equation.

  • If, then the equation has a root:
  • If, then the equation has the same root, but in fact, one root:

    Such roots are called double roots.

  • If, then the root of the discriminant is not extracted. This indicates that the equation has no roots.

Why is it possible different amount roots? Let us turn to the geometric meaning of the quadratic equation. The graph of the function is a parabola:

In a particular case, which is a quadratic equation, . And this means that the roots of the quadratic equation are the points of intersection with the x-axis (axis). The parabola may not cross the axis at all, or it may intersect it at one (when the top of the parabola lies on the axis) or two points.

In addition, the coefficient is responsible for the direction of the branches of the parabola. If, then the branches of the parabola are directed upwards, and if - then downwards.

Examples:

Solutions:

Answer:

Answer: .

Answer:

This means there are no solutions.

Answer: .

2. Vieta's theorem

Using the Vieta theorem is very easy: you just need to choose a pair of numbers whose product is equal to the free term of the equation, and the sum is equal to the second coefficient, taken with the opposite sign.

It is important to remember that Vieta's theorem can only be applied to given quadratic equations ().

Let's look at a few examples:

Example #1:

Solve the equation.

Solution:

This equation is suitable for solution using Vieta's theorem, because . Other coefficients: ; .

The sum of the roots of the equation is:

And the product is:

Let's select such pairs of numbers, the product of which is equal, and check if their sum is equal:

  • And. The sum is;
  • And. The sum is;
  • And. The amount is equal.

and are the solution of the system:

Thus, and are the roots of our equation.

Answer: ; .

Example #2:

Solution:

We select such pairs of numbers that give in the product, and then check whether their sum is equal:

and: give in total.

and: give in total. To get it, you just need to change the signs of the alleged roots: and, after all, the product.

Answer:

Example #3:

Solution:

The free term of the equation is negative, and hence the product of the roots is a negative number. This is possible only if one of the roots is negative and the other is positive. So the sum of the roots is differences of their modules.

We select such pairs of numbers that give in the product, and the difference of which is equal to:

and: their difference is - not suitable;

and: - not suitable;

and: - not suitable;

and: - suitable. It remains only to remember that one of the roots is negative. Since their sum must be equal, then the root, which is smaller in absolute value, must be negative: . We check:

Answer:

Example #4:

Solve the equation.

Solution:

The equation is reduced, which means:

The free term is negative, and hence the product of the roots is negative. And this is possible only when one root of the equation is negative and the other is positive.

We select such pairs of numbers whose product is equal, and then determine which roots should have a negative sign:

Obviously, only roots and are suitable for the first condition:

Answer:

Example #5:

Solve the equation.

Solution:

The equation is reduced, which means:

The sum of the roots is negative, which means that at least one of the roots is negative. But since their product is positive, it means both roots are minus.

We select such pairs of numbers, the product of which is equal to:

Obviously, the roots are the numbers and.

Answer:

Agree, it is very convenient - to invent roots orally, instead of counting this nasty discriminant. Try to use Vieta's theorem as often as possible.

But the Vieta theorem is needed in order to facilitate and speed up finding the roots. To make it profitable for you to use it, you must bring the actions to automatism. And for this, solve five more examples. But don't cheat: you can't use the discriminant! Only Vieta's theorem:

Solutions for tasks for independent work:

Task 1. ((x)^(2))-8x+12=0

According to Vieta's theorem:

As usual, we start the selection with the product:

Not suitable because the amount;

: the amount is what you need.

Answer: ; .

Task 2.

And again, our favorite Vieta theorem: the sum should work out, but the product is equal.

But since it should be not, but, we change the signs of the roots: and (in total).

Answer: ; .

Task 3.

Hmm... Where is it?

It is necessary to transfer all the terms into one part:

The sum of the roots is equal to the product.

Yes, stop! The equation is not given. But Vieta's theorem is applicable only in the given equations. So first you need to bring the equation. If you can’t bring it up, drop this idea and solve it in another way (for example, through the discriminant). Let me remind you that to bring a quadratic equation means to make the leading coefficient equal to:

Fine. Then the sum of the roots is equal, and the product.

It's easier to pick up here: after all - a prime number (sorry for the tautology).

Answer: ; .

Task 4.

The free term is negative. What's so special about it? And the fact that the roots will be of different signs. And now, during the selection, we check not the sum of the roots, but the difference between their modules: this difference is equal, but the product.

So, the roots are equal and, but one of them is with a minus. Vieta's theorem tells us that the sum of the roots is equal to the second coefficient with the opposite sign, that is. This means that the smaller root will have a minus: and, since.

Answer: ; .

Task 5.

What needs to be done first? That's right, give the equation:

Again: we select the factors of the number, and their difference should be equal to:

The roots are equal and, but one of them is minus. Which? Their sum must be equal, which means that with a minus there will be a larger root.

Answer: ; .

Let me summarize:
  1. Vieta's theorem is used only in the given quadratic equations.
  2. Using the Vieta theorem, you can find the roots by selection, orally.
  3. If the equation is not given or none found suitable couple factors of the free term, which means there are no integer roots, and you need to solve it in another way (for example, through the discriminant).

3. Full square selection method

If all the terms containing the unknown are represented as terms from the formulas of abbreviated multiplication - the square of the sum or difference - then after the change of variables, the equation can be represented as an incomplete quadratic equation of the type.

For example:

Example 1:

Solve the equation: .

Solution:

Answer:

Example 2:

Solve the equation: .

Solution:

Answer:

In general, the transformation will look like this:

This implies: .

Doesn't it remind you of anything? It's the discriminant! That's exactly how the discriminant formula was obtained.

QUADRATIC EQUATIONS. BRIEFLY ABOUT THE MAIN

Quadratic equation is an equation of the form, where is the unknown, are the coefficients of the quadratic equation, is the free term.

Complete quadratic equation- an equation in which the coefficients are not equal to zero.

Reduced quadratic equation- an equation in which the coefficient, that is: .

Incomplete quadratic equation- an equation in which the coefficient and or free term c are equal to zero:

  • if the coefficient, the equation has the form: ,
  • if a free term, the equation has the form: ,
  • if and, the equation has the form: .

1. Algorithm for solving incomplete quadratic equations

1.1. An incomplete quadratic equation of the form, where, :

1) Express the unknown: ,

2) Check the sign of the expression:

  • if, then the equation has no solutions,
  • if, then the equation has two roots.

1.2. An incomplete quadratic equation of the form, where, :

1) Let's take the common factor out of brackets: ,

2) The product is equal to zero if at least one of the factors is equal to zero. Therefore, the equation has two roots:

1.3. An incomplete quadratic equation of the form, where:

This equation always has only one root: .

2. Algorithm for solving complete quadratic equations of the form where

2.1. Solution using the discriminant

1) Let's bring the equation to the standard form: ,

2) Calculate the discriminant using the formula: , which indicates the number of roots of the equation:

3) Find the roots of the equation:

  • if, then the equation has a root, which are found by the formula:
  • if, then the equation has a root, which is found by the formula:
  • if, then the equation has no roots.

2.2. Solution using Vieta's theorem

The sum of the roots of the reduced quadratic equation (an equation of the form, where) is equal, and the product of the roots is equal, i.e. , but.

2.3. Full square solution

Quadratic equations differ from linear ones by having one unknown raised to the second power. In the classical (canonical) form, the factors a, b and the free term c are not equal to zero.

A quadratic equation is an equation in which the left side is zero, and the right side is a trinomial of the second degree of the form:

To solve a trinomial or to find its roots means to find the values ​​of x for which the equality becomes true. It follows that the roots of such an equation are the values ​​of the variable x.

Finding roots through the discriminant formula

An example may have one or two roots, or it may have none. There is a very simple and understandable algorithm of actions for determining the number of solutions. To do this, it is enough to find the discriminant - a special calculated value used in the search for roots. The formula for calculations is as follows:

Based on the results obtained, the following conclusions can be drawn:

  • there are two roots if D > 0;
  • there is one solution if D = 0;
  • there are no roots if D< 0.

If D ≥ 0, then you need to continue the calculations according to the formula:

The value of x1 will be , and x2 − . If D = 0, then the “±” sign loses any meaning, because √0 = 0. In this case, the only root is .

Examples of solving a quadratic equation

The algorithm for solving a polynomial is very simple:

  1. Bring the expression to classic look.
  2. Determine if there are roots of a quadratic equation (discriminant formula).
  3. If D ≥ 0, then find the values ​​of the variable x using any of the known methods.

Let's bring good example how to solve a quadratic equation.

Task 1. Find the roots and graphically designate the area of ​​solution of the equation 6x + 8 - 2 × 2 = 0.

First, it is necessary to reduce the equality to the canonical form ax2+bx+c=0. To do this, we rearrange the terms of the polynomial in places.

Then, we simplify the expression by getting rid of the coefficient in front of x2. Multiplying the left and right sides by (-1)⁄2, we get:

The advantages of formulas for finding the roots of a quadratic equation through the discriminant is that they can be used to solve any trinomial of the second degree.

So, in the reduced polynomial a=1, b=-3, and c=-4. Let's calculate the value of the discriminant for a specific example.

So the equation has two roots. To graphically find the solution area of ​​the example, you need to build a parabola whose function is equal to .

The expression graphs will look like this:

In the example under consideration, D>0, therefore, there are two roots.

Tip 1: If the factor a is a negative number, you need to multiply both parts of the example by (-1).

Tip 2: If there are fractions in the example, try to get rid of them by multiplying the left and right sides of the expression by their reciprocals.

Tip 3: You should always bring the equation to the canonical form, this will help eliminate the possibility of confusion in the coefficients.

Vieta's theorem

There are methods that can significantly reduce calculations. They include Vieta's theorem. This method can be applied not to all types of equations, but only if the factor for the variable x2 is equal to one, that is, a = 1.

Consider this statement with specific examples:

  1. 5 × 2 - 2x + 9 = 0 - application of the theorem in this case is inappropriate, since a = 5;
  2. –x2 + 11x - 8 \u003d 0 - a \u003d -1, which means that the equation can be solved by the Vieta method only after reduction to the classical form, that is, by multiplying both parts by -1;
  3. x2 + 4x - 5 = 0 - this task is ideal for analyzing the solution method.

In order to quickly find the roots of the expression, it is necessary to choose a pair of x values ​​for which the following system of linear equations is valid.