Теплоэффективность дома от площади наружных стен. Сравнение теплопотерь домов из разного материала

Энергоэффективная реконструкция здания поможет сэкономить тепловую энергию и повысить комфортность жизни. Наибольший потенциал экономии заключается в хорошей теплоизоляции наружных стен и крыши. Самый простой способ оценить возможности эффективного ремонта – это потребление тепловой энергии. Если в год потребляется более 100 кВт ч электроэнергии (10 м³ природного газа) на квадратный метр отапливаемой площади, включая площадь стен, то энергосберегающий ремонт может быть выгодным.

Потери тепла через внешнюю оболочку

Основная концепция энергосберегающего здания – это сплошной слой теплоизоляции над нагретой поверхностью контура дома.

  1. Крыша. С толстым слоем теплоизоляции потери тепла через крышу можно уменьшить;

Важно! В деревянных конструкциях теплозащитное уплотнение крыши затруднено, так как древесина набухает и может повреждаться от большой влажности.

  1. Стены. Как и с крышей, потери тепла снижаются при применении специального покрытия. В случае внутренней теплоизоляции стен существует риск того, что конденсат будет собираться за изоляцией, если влажность в помещении слишком высокая;

  1. Пол или подвал. По практическим соображениям тепловая изоляция производится изнутри здания;
  2. Термические мосты. Тепловые мосты представляют собой нежелательные охлаждающие ребра (теплопроводники) снаружи здания. Например, бетонный пол, который одновременно является балконным полом. Многие тепловые мосты находятся в области почвы, парапетах, оконных и дверных рамах. Существуют также временные тепловые мосты, если детали стен закреплены металлическими элементами. Термомосты могут составлять значительную часть потерь тепла;
  3. Окна. За последние 15 лет теплоизоляция оконного стекла улучшилась в 3 раза. Сегодняшние окна обладают специальным отражающим слоем на стеклах, что уменьшает потери излучения, это одно,- и двухкамерные стеклопакеты;
  4. Вентиляция. Обычное здание имеет воздушные утечки, особенно в области окон, дверей и на крыше, что обеспечивает необходимый воздухообмен. Однако в холодное время года это вызывает значительные теплопотери дома от выходящего нагретого воздуха. Хорошие современные здания достаточно воздухонепроницаемы, и необходимо регулярно вентилировать помещения, открывая окна на несколько минут. Чтобы уменьшить потери тепла за счет вентиляции, все чаще устанавливаются комфортные вентиляционные системы. Этот вид теплопотерь оценивается в 10-40%.

Термографические съемки в здании с плохой изоляцией дают представление о том, как много тепла теряется. Это очень хороший инструмент для контроля качества ремонта или нового строительства.

Способы оценки теплопотерь дома

Существуют сложные методики расчетов, учитывающие различные физические процессы: конвекционный обмен, излучение, но они часто являются излишними. Обычно используются упрощенные формулы, а при необходимости можно добавить к полученному результату 1-5%. Ориентация здания учитывается в новых постройках, но солнечное излучение также не влияет значительно на расчет теплопотерь.

Важно! При применении формул для расчетов потерь тепловой энергии всегда учитывается время нахождения людей в том или ином помещении. Чем оно меньше, тем меньшие температурные показатели надо брать за основу.

  1. Усредненные величины. Самый приблизительный метод, не обладает достаточной точностью. Существуют таблицы, составленные для отдельных регионов с учетом климатических условий и средних параметров здания. Например, для конкретной местности указывается значение мощности в киловаттах, необходимое для нагрева 10 м² площади помещения с потолками высотой 3 м и одним окном. Если потолки ниже или выше, и в комнате 2 окна, показатели мощности корректируются. Этот метод совершенно не учитывает степень теплоизоляции дома и не даст экономии тепловой энергии;
  2. Расчет теплопотерь ограждающего контура здания. Суммируется площадь внешних стен за вычетом размеров площадей окон и дверей. Дополнительно находится площадь крыши с полом. Дальнейшие расчеты ведутся по формуле:

Q = S x ΔT/R, где:

  • S – найденная площадь;
  • ΔT – разность между внутренней и наружной температурами;
  • R – сопротивление передаче тепла.

Результат, полученный для стен, пола и крыши, объединяется. Затем добавляются вентиляционные потери.

Важно! Такой подсчет теплопотерь поможет определиться с мощностью котла для здания, но не позволит рассчитать покомнатное количество радиаторов.

  1. Расчет теплопотерь по комнатам. При использовании аналогичной формулы рассчитываются потери для всех комнат здания по отдельности. Затем находятся теплопотери на вентиляцию путем определения объема воздушной массы и примерного количества раз в день ее смены в помещении.

Важно! При расчете вентиляционных потерь нужно обязательно учитывать назначение помещения. Для кухни и ванной комнаты необходима усиленная вентиляция.

Пример расчета теплопотерь жилого дома

Применяется второй способ расчета, только для внешних конструкций дома. Через них уходит до 90 процентов тепловой энергии. Точные результаты важны, чтобы выбрать необходимый котел для отдачи эффективного тепла без излишнего нагрева помещений. Также это показатель экономической эффективности выбранных материалов для теплозащиты, показывающий, как быстро можно окупить затраты на их приобретение. Расчеты упрощенные, для здания без наличия многослойного теплоизоляционного слоя.

Дом обладает площадью 10 х 12 м и высотой 6 м. Стены толщиной в 2,5 кирпича (67 см), покрытые штукатуркой, слоем 3 см. В доме 10 окон 0,9 х 1 м и дверь 1 х 2 м.

Расчет сопротивления передаче тепла стен:

  1. R = n/λ, где:
  • n – толщина стен,
  • λ – удельная теплопроводность (Вт/(м °C).

Это значение ищется по таблице для своего материала.

  1. Для кирпича:

Rкир = 0,67/0,38 = 1,76 кв.м °C/Вт.

  1. Для штукатурного покрытия:

Rшт = 0,03/0,35 = 0,086 кв.м °C/Вт;

  1. Общая величина:

Rст = Rкир + Rшт = 1,76 + 0,086 = 1,846 кв.м °C/Вт;

Вычисление площади внешних стен:

  1. Общая площадь внешних стен:

S = (10 + 12) х 2 х 6 = 264 кв.м.

  1. Площадь окон и дверного проема:

S1 = ((0,9 х 1) х 10) + (1 х 2) = 11 кв.м.

  1. Скорректированная площадь стен:

S2 = S – S1 = 264 – 11 = 253 кв.м.

Тепловые потери для стен будут определяться:

Q = S x ΔT/R = 253 х 40/1,846 = 6810,22 Вт.

Важно! Значение ΔT взято произвольно. Для каждого региона в таблицах можно отыскать среднее значение этой величины.

На следующем этапе идентичным образом высчитываются теплопотери через фундамент, окна, крышу, дверь. При вычислении показателя тепловых потерь для фундамента берется меньшая разность температур. Затем надо просуммировать все полученные цифры и получить итоговую.

Чтобы определить возможный расход электроэнергии на отопление, можно представить эту цифру в кВт ч и рассчитать ее за отопительный сезон.

Если использовать только цифру для стен, получается:

  • за сутки:

6810,22 х 24 = 163,4 кВт ч;

  • за месяц:

163,4 х 30 = 4903,4 кВт ч;

  • за отопительный сезон 7 месяцев:

4903,4 х 7 =34 323,5 кВт ч.

Когда отопление газовое, определяется расход газа, исходя из его теплоты сгорания и коэффициента полезного действия котла.

Тепловые потери на вентиляцию

  1. Найти воздушный объем дома:

10 х 12 х 6 = 720 м³;

  1. Масса воздуха находится по формуле:

М = ρ х V, где ρ – плотность воздуха (берется из таблицы).

М = 1, 205 х 720 = 867,4 кг.

  1. Надо определить цифру, сколько раз сменяется воздух во всем доме за сутки (например, 6 раз), и высчитать теплопотери на вентиляцию:

Qв = nxΔT xmx С, где С – удельная теплоемкость для воздуха, n – число раз замены воздуха.

Qв = 6 х 40 х 867,4 х 1,005 = 209217 кДж;

  1. Теперь надо перевести в Квт ч. Так как в одном киловатт-часе 3600 килоджоулей, то 209217 кДж = 58,11 кВт ч

Некоторые методики расчета предлагают взять потери тепла на вентиляцию от 10 до 40 процентов общих теплопотерь, не высчитывая их по формулам.

Для облегчения расчетов теплопотерь дома есть калькуляторы онлайн, где можно вычислить результат для каждой комнаты или дома целиком. В предлагаемые поля просто вводятся свои данные.

Видео

Любое строительство дома, начинается с составления проекта дома. Уже на этом этапе следует задуматься об утеплении своего дома, т.к. не существует зданий и домов с нулевыми теплопотерями, которые мы оплачиваем холодной зимой, в отопительный сезон. Поэтому осуществлять утепление дома снаружи и внутри нужно с учетом рекомендаций проектировщиков.

Что и зачем утеплять?

При строительстве домов многие не знают, и даже не догадываются, что в построенном частном доме, в отопительный сезон до 70% тепла будет уходить на отопление улицы.

Задавшись вопросом экономии семейного бюджета и проблемой утепления дома, многие задаются вопросом: что, и как утеплять ?

На этот вопрос очень легко ответить. Достаточно зимой взглянуть на экран тепловизора, и вы сразу же помете, через какие элементы конструкции уходит тепло в атмосферу.

Если у Вас нет такого прибора, то не беда, ниже мы опишем статистические данные, которые показывают, куда и в каких процентах уходит тепло из дома, а также размести видео тепловизора с реального проекта.

При утеплении дома важно понимать, что тепло уходит не только через перекрытия и крышу, стены и фундамент, но и через старые окна и двери, которые нужно будет заменить, или утеплить в холодное время года.

Распределение потерь тепла в доме

Все специалисты рекомендуют осуществлять утепление частных домов , квартир и производственных помещений, не только снаружи, но и изнутри. Если этого не сделать, то «дорогое» нам тепло, в холодное время года, будет попросту быстро улетучиваться в никуда.

Основываясь на статистике и данных специалистов, согласно которым, если определить и ликвидировать основные утечки тепла, то можно уже будет на этом сэкономить на отоплении зимой от 30% и более процентов.

Итак, давайте же разберем, в каких направлениях, и в каких процентах уходит наше тепло из дома.

Самые большие потери тепла происходят через:

Теплопотери через крышу и перекрытия

Как известно, теплый воздух всегда поднимается в верх, поэтому он обогревает не утепленную крышу дома и перекрытия, через которые и происходит утечка 25% нашего с Вами тепла.

Чтобы произвести утепление крыши дома и сократить потери тепла до минимума, нужно использовать утеплители для крыши суммарной толщиной от 200мм до 400мм. Технологию утепления крыши дома можно увидеть, увеличив картинку с права.


Теплопотери через стены

Многие, наверное, зададутся вопросом: а, почему теплопотери через не утепленные стены дома (около 35%), больше чем через не утепленную крышу дома, ведь весь теплый воздух поднимается в верх?

Все очень просто. Во-первых, площадь стен намного больше площади крыши, а во-вторых, разные материалы имеют разную теплопроводность. Поэтому, при строительстве загородных домов, в первую очередь нужно позаботиться об утеплении стен дома . Для этого подойдут утеплители для стен суммарной толщиной от 100 до 200мм.

Для правильного утепления стен дома необходимо иметь знания технологий и специальный инструмент. Технологию утепления стен кирпичного дома можно увидеть, увеличив картинку справа.

Теплопотери через полы

Как не странно, но не утепленные полы в доме забирают от 10 до 15% тепла (цифра может быть и больше, если у Вас дом построен на сваях). Это связано с вентиляцией под домом в холодный период зимы.

Для минимизации теплопотерь через не утепленные полы в доме , можно использовать утеплители для полов толщиной от 50 до 100мм. Этого будет достаточно, чтобы ходит босиком по полу в холодную зимнею пору. Технологию утепления полов дома можно увидеть, увеличив картинку справа.

Теплопотери через окна

Окна - пожалуй это, тот самый элемент, который практически невозможно утеплить, т.к. тогда дом станет похож на темницу. Единственное, что можно сделать для сокращения теплопотерь до 10%, так это сократить количество окон при проектировании, утеплить откосы и установить как минимум двойные стеклопакеты.

Теплопотери через двери

Последний элемент в конструкции дома, через который уходит до 15% тепла - это двери. Связано это с постоянным открытием входных дверей, через которые постоянно выходит тепло. Для сокращения теплопотерь через двери до минимума, рекомендуется устанавливать двойные двери, уплотнять их уплотнительной резинкой и ставить тепловые завесы.

Преимущества утепленного дома

  • Окупаемость затрат в первый же отопительный сезон
  • Экономия на кондиционирование и отоплении дома
  • Прохлада в помещении летом
  • Отличная дополнительная звукоизоляция стен и перекрытий потолка и пола
  • Защита конструкций дома от разрушения
  • Повышенный комфорт проживания в помещении
  • Можно будет намного позже включать отопление

Итоги по утеплению частного дома

Утеплять дом очень выгодно , и в большинстве случаев даже необходимо, т.к. это обусловлено большим количеством преимуществ перед не утепленными домами, и позволяет сэкономить Ваш семейный бюджет.

Осуществив наружное и внутреннее утепление дома, Ваш частный дом станет подобен термосу. Из него не будет улетать тепло зимой и поступать жара летом, а все затраты на полное утепление фасада и крыши, цоколя и фундамента окупятся в течение одного отопительного сезона.

Для оптимального выбора утеплителя для дома , мы рекомендуем Вам почитать нашу статью: Основные виды утеплителей для дома , в которой подробно рассмотрены основные виды утеплителей, используемых при утеплении частного дома снаружи и внутри, их плюсы и минусы.

Видео: Реальный проект - куда уходит тепло в доме

Условно теплопотери частного дома можно разделить на две группы:

  • Естественные — потери тепла через стены, окна или крышу здания. Это потери которые невозможно полностью устранить, но зато их можно свести к минимуму.
  • «Утечки тепла» — дополнительные теплопотери, которых чаще всего можно избежать. Это различные визуально незаметные ошибки: скрытые дефекты, ошибки монтажа и т.п., которые невозможно обнаружить визуально. Для этого используется тепловизор.

Далее предлагаем вашему вниманию 15 примеров таких «утечек». Это реальные проблемы, которые чаще всего встречаются в частных домах. Вы увидите какие проблемы могут присутствовать в вашем доме и на что следует обратить внимание.

Некачественная теплоизоляция стен

Изоляция работает не так эффективно, как могла бы. На термограмме видно, что температура на поверхности стены распределена неравномерно. То есть, одни участки стены нагреваются сильнее других (чем ярче цвет, тем выше температура). А это значит что и потери тепла в ни сильнее, что неправильно для утепленной стены.

В данном случае яркие области это пример неэффективной работы изоляции. Вероятно что пенопласт в этих места поврежден, некачественно смонтирован или отсутствует вовсе. Поэтому после утепления здания важно убедиться, что работы выполнены качественно и изоляция работает эффективно.

Некачественная теплоизоляция крыши

Стык между деревянной балкой и минеральной ватой недостаточно уплотнен. Из-за этого изоляция работает недостаточно эффективно и обеспечивает дополнительные потери тепла через крышу, которых можно было бы избежать.

Радиатор засорен и отдает мало тепла

Одна из причин почему в доме холодно — некоторые секции радиатора не нагреваются. Это может быть вызвано несколькими причинами: строительный мусор, скопление воздуха или заводской брак. Но результат один — радиатор работает в половину своей отопительной мощности и недостаточно греет помещение.

Радиатор «греет» улицу

Еще один пример неэффективной работы радиатора.

Внутри помещения установлен радиатор, который очень сильно нагревает стену. В результате часть выделяемого им тепла уходит на улицу. Фактически тепло используется для обогрева улицы.

Близкая укладка теплых полов к стене

Труба теплого пола уложена близко к наружной стене. Теплоноситель в системе охлаждается более интенсивно и его приходится подогревать чаще. Результат - увеличение затрат на отопление.

Приток холода через щели в окнах

Часто в окнах присутствуют щели, которые появляются из-за:

  • недостаточного прижатия окна к оконной раме;
  • износа уплотнительных резинок;
  • некачественного монтажа окна.

Через щели в помещение постоянно попадает холодный воздух, из-за которого образуются вредные для здоровья сквозняки и увеличиваются теплопотери здания.

Приток холода через щели в дверях

Также щели возникают в балконных и входных дверях.

Мостики холода

«Мостики холода» — это участки здания с более низким термическим сопротивлением по отношению к другим участкам. То есть они пропускают больше тепла. Например это углы, бетонные перемычки над окнами, места сопряжения строительных конструкций и так далее.

Чем вредны мостики холода:

  • Увеличивают теплопотери здания. Одни мостики теряют больше тепла, другие меньше. Все зависит от особенностей здания.
  • При определенных условиях в них выпадает конденсат и появляется грибок. Такие потенциально опасные участки нужно предупреждать и устранять заранее.

Охлаждение помещения через вентиляцию

Вентиляция работает «наоборот». Вместо удаления воздуха из помещения наружу, с улицы в помещение затягивается холодный уличный воздух. Это также, как и в примере с окнами обеспечивает сквозняки и охлаждает помещение. На приведенном примере температура воздуха, который попадает в помещение -2,5 градуса, при температуре помещения ~20-22 градуса.

Приток холода через люк на крышу

А в данном случае холод попадает в помещение через люк на чердак.

Приток холода через монтажное отверстие кондиционера

Приток холода в помещение через монтажное отверстие кондиционера.

Потери тепла через стены

На термограмме видны «мостики тепла», связанные с использованием при строительстве стены материалов с более слабым сопротивлением теплопередаче.

Потери тепла через фундамент

Часто утепляя стену здания забывают о еще важном участке — фундаменте. Через фундамент здания также осуществляются потери тепла, особенно если в здании есть подвальное помещение или внутри уложен теплый пол.

Холодная стена из-за кладочных швов

Кладочные швы между кирпичами являются многочисленными мостиками холода и увеличивают теплопотери через стены. На приведенном примере видно, что разница между минимальной температурой (кладочный шов) и максимальной (кирпич) составляет почти 2 градуса. Термическое сопротивление стены снижено.

Воздушные течи

Мостик холода и воздушная течь под потолком. Возникает из-за недостаточной герметизации и утепления стыков между кровлей, стеной и плитой перекрытия. В результате помещение дополнительно охлаждается и появляются сквозняки.

Заключение

Все это типичные ошибки, которые встречаются в большинстве частных домов. Многие из них легко устраняются и позволяют заметно улучшить энергетическое состояние здания.

Перечислим их еще раз:

  1. Утечки тепла через стены;
  2. Неэффективная работа тепловой изоляции стен и крыши — скрытые дефекты, некачественный монтаж, повреждения и т.п.;
  3. Притоки холода через монтажные отверстия кондиционера, щели в окнах и дверях, вентиляцию;
  4. Неэффективная работа радиаторов;
  5. Мостики холода;
  6. Влияние кладочных швов.

15 скрытых утечек тепла в частном доме, о которых вы не догадывались

Выбор теплоизоляции, вариантов утепления стен, перекрытий и других огрождающих конструкций для большинства заказчиков-застройщиков задача сложная. Слишком много противоречивых проблем требуется решить одновременно. Данная страничка поможет Вам во всем этом разобраться.

В настоящее время теплосбережение энергоресурсов приобрело большое значение. Согласно СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплопередаче определяется по одному из двух альтернативных подходов:

  • предписывающему (нормативные требования предьявляются к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.п.)
  • потребительскому (сопротивление теплопередачи ограждения может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного).

Санитарно-гигиенические требования должны выполняться всегда.

К ним относятся

Требование, что бы перепад между температурами внутреннего воздуха и на поверхности огрождающих конструкций не превышали допустимых значений. Максимальные допустимые значения перепада для наружной стены 4°С, для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.

Требование, что бы температура на внутренней поверхности ограждения была выше температуры точки росы.

Для Москвы и ее области требуемое теплотехническое сопротивление стены по потребительскому подходу составляет 1,97 °С·м. кв./Вт, а по предписывающему подходу:

Таблица толщин и термических сопротивление материалов для условий Москвы и ее области.

Наименование материала стены Толщина стены и соответствующее ей термическое сопротивление Необходимая толщина по потребительскому подходу
(R=1,97 °С·м. кв./ Вт)
и по предписывающему подходу
(R=3,13 °С·м. кв./ Вт)
Полнотелый сплошной глиняный кирпич (плотность 1600 кг/м. куб) 510 мм (кладка в два кирпича), R=0,73 °С·м. кв./Вт 1380 мм
2190 мм
Керамзитобетон (плотность 1200 кг/м. куб.) 300 мм, R=0,58 °С·м. кв./Вт 1025 мм
1630 мм
Деревянный брус 150 мм, R=0,83 °С·м. кв./Вт 355 мм
565 мм
Деревянный щит с заполнением минеральной ватой (толщины внутренней и наружной обшивки из досок по 25 мм) 150 мм, R=1,84 °С·м. кв./Вт 160 мм
235 мм

Таблица требуемых сопротивлений теплопередаче огрождающих конструкций в домах Московской области.

Наружная стена Окно, балконная дверь Покрытие и перекрытия Перекрытие чердачное и перекрытия над неотапливаемыми подвалами Входной двери
По предписывающему подходу
3,13 0,54 3,74 3,30 0,83
По потребительскому подходу
1,97 0,51 4,67 4,12 0,79

Из этих таблиц видно, что большинство загородного жилья в Подмосковье не удовлетворяют требованиям по теплосбережению, при этом даже потребительский подход несоблюдается во многих вновь строящихся зданиях.

Поэтому, подбирая котел или обогревательные приборы только по указанным в их документации способности обогреть определенную площадь, Вы утверждаете, что Ваш дом построен со строгим учетом требований СНиП 23-02-2003.

Из вышеизложенного материала следует вывод. Для правильного выбора мощности котла и обогревательных приборов, необходимо рассчитать реальные теплопотери помещений Вашего дома.

Ниже мы покажем несложную методику расчета теплопотерь Вашего дома.

Дом теряет тепло через стену, крышу, сильные выбросы тепла идут через окна, в землю тоже уходит тепло, существенные потери тепла могут приходиться на вентиляцию.

Тепловые потери в основном зависят от:

  • разницы температур в доме и на улице (чем разница больше, тем потери выше),
  • теплозащитных свойств стен, окон, перекрытий, покрытий (или, как говорят ограждающих конструкций).

Ограждающие конструкции сопротивляются утечкам тепла, поэтому их теплозащитные свойства оценивают величиной, называемой сопротивлением теплопередачи.

Сопротивление теплопередачи показывает, какое количество тепла уйдет через квадратный метр ограждающей конструкции при заданном перепаде температур. Можно сказать и наоборот, какой перепад температур возникнет при прохождении определенного количества тепла через квадратный метр ограждений.

где q - это количество тепла, которое теряет квадратный метр ограждающей поверхности. Его измеряют в ваттах на квадратный метр (Вт/м. кв.); ΔT - это разница между температурой на улице и в комнате (°С) и, R - это сопротивление теплопередачи (°С/ Вт/м. кв. или °С·м. кв./ Вт).

Когда речь идет о многослойной конструкции, то сопротивление слоев просто складываются. Например, сопротивление стены из дерева, обложенного кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.).

Распределение температуры и пограничные слои воздуха при передаче тепла через стену

Расчет на теплопотери проводят для самого неблагоприятного периода, которым является самая морозная и ветреная неделя в году.

В строительных справочниках, как правило, указывают тепловое сопротивление материалов исходя из этого условия и климатического района (или наружной температуры), где находится Ваш дом.

Таблица - Сопротивление теплопередачи различных материалов при ΔT = 50 °С (Т нар. = -30 °С, Т внутр. = 20 °С.)

Материал и толщина стены Сопротивление теплопередаче R m ,
Кирпичная стена
толщиной в 3 кирпича (79 см)
толщиной в 2,5 кирпича (67 см)
толщиной в 2 кирпича (54 см)
толщиной в 1 кирпич (25 см)

0,592
0,502
0,405
0,187
Сруб из бревен Ø 25
Ø 20
0,550
0,440
Сруб из бруса

толщиной 20 см
толщиной 10 см


0,806
0,353
Каркасная стена (доска +
минвата + доска) 20 см
0,703
Стена из пенобетона 20 см
30 см
0,476
0,709
Штукатурка по кирпичу, бетону,
пенобетону (2-3 см)
0,035
Потолочное (чердачное) перекрытие 1,43
Деревянные полы 1,85
Двойные деревянные двери 0,21

Таблица - Тепловые потери окон различной конструкции при ΔT = 50 °С (Т нар. = -30 °С, Т внутр. = 20 °С.)

Тип окна R T q , Вт/м2 Q , Вт
Обычное окно с двойными рамами 0,37 135 216
Стеклопакет (толщина стекла 4 мм)

4-16-4
4-Ar16-4
4-16-4К
4-Ar16-4К


0,32
0,34
0,53
0,59

156
147
94
85

250
235
151
136
Двухкамерный стеклопакет

4-6-4-6-4
4-Ar6-4-Ar6-4
4-6-4-6-4К
4-Ar6-4-Ar6-4К
4-8-4-8-4
4-Ar8-4-Ar8-4
4-8-4-8-4К
4-Ar8-4-Ar8-4К
4-10-4-10-4
4-Ar10-4-Ar10-4
4-10-4-10-4К
4-Ar10-4-Ar10-4К
4-12-4-12-4
4-Ar12-4-Ar12-4
4-12-4-12-4К
4-Ar12-4-Ar12-4К
4-16-4-16-4
4-Ar16-4-Ar16-4
4-16-4-16-4К
4-Ar16-4-Ar16-4К


0,42
0,44
0,53
0,60
0,45
0,47
0,55
0,67
0,47
0,49
0,58
0,65
0,49
0,52
0,61
0,68
0,52
0,55
0,65
0,72

119
114
94
83
111
106
91
81
106
102
86
77
102
96
82
73
96
91
77
69

190
182
151
133
178
170
146
131
170
163
138
123
163
154
131
117
154
146
123
111

Примечание
. Четные цифры в условном обозначении стеклопакета означают воздушный
зазор в мм;
. Символ Ar означает, что зазор заполнен не воздухом, а аргоном;
. Литера К означает, что наружное стекло имеет специальное прозрачное
теплозащитное покрытие.

Как видно из предыдущей таблицы, современные стеклопакеты позволяют уменьшить теплопотери окна почти в два раза. Например, для десяти окон размером 1,0 м х 1,6 м экономия достигнет киловатта, что в месяц дает 720 киловатт-часов.

Для правильного выбора материалов и толщин ограждающих конструкций применим эти сведения к конкретному примеру.

В расчете тепловых потерь на один кв. метр участвуют две величины:

  • перепад температур ΔT,
  • сопротивления теплопередаче R.

Температуру в помещении определим в 20 °С, а наружную температуру примем равной -30 °С. Тогда перепад температур ΔT будет равным 50 °С. Стены выполнены из бруса толщиной 20 см, тогда R= 0,806 °С·м. кв./ Вт.

Тепловые потери составят 50 / 0,806 = 62 (Вт/м. кв.).

Для упрощения расчетов теплопотерь в строительных справочниках приводят теплопотери разного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. В частности, даются разные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых, а также учитывается разная тепловая картина для помещений первого и верхнего этажа.

Таблица - Удельные теплопотери элементов ограждения здания (на 1 кв.м. по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.

Характеристика
ограждения
Наружная
температура,
°С
Теплопотери, Вт
Первый этаж Верхний этаж
Угловая
комната
Неугл.
комната
Угловая
комната
Неугл.
комната
Стена в 2,5 кирпича (67 см)
с внутр. штукатуркой
-24
-26
-28
-30
76
83
87
89
75
81
83
85
70
75
78
80
66
71
75
76
Стена в 2 кирпича (54 см)
с внутр. штукатуркой
-24
-26
-28
-30
91
97
102
104
90
96
101
102
82
87
91
94
79
87
89
91
Рубленая стена (25 см)
с внутр. обшивкой
-24
-26
-28
-30
61
65
67
70
60
63
66
67
55
58
61
62
52
56
58
60
Рубленая стена (20 см)
с внутр. обшивкой
-24
-26
-28
-30
76
83
87
89
76
81
84
87
69
75
78
80
66
72
75
77
Стена из бруса (18 см)
с внутр. обшивкой
-24
-26
-28
-30
76
83
87
89
76
81
84
87
69
75
78
80
66
72
75
77
Стена из бруса (10 см)
с внутр. обшивкой
-24
-26
-28
-30
87
94
98
101
85
91
96
98
78
83
87
89
76
82
85
87
Каркасная стена (20 см)
с керамзитовымзаполнением
-24
-26
-28
-30
62
65
68
71
60
63
66
69
55
58
61
63
54
56
59
62
Стена из пенобетона (20 см)
с внутр. штукатуркой
-24
-26
-28
-30
92
97
101
105
89
94
98
102
87
87
90
94
80
84
88
91

Примечание
Если за стеной находится наружное неотапливаемое помещение (сени, застекленная веранда и т. д.), то потери тепла через нее составляют 70% от расчетных, а если за этим неотапливаемым помещением не улица, а еще одно помещение наружу (например, сени, выходящие на веранду), то 40% от расчетного значения.

Таблица - Удельные теплопотери элементов ограждения здания (на 1 кв.м. по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.

Характеристика ограждения Наружная
температура, °С
Теплопотери,
кВт
Окно с двойным остеклением -24
-26
-28
-30
117
126
131
135
Сплошные деревянные двери (двойные) -24
-26
-28
-30
204
219
228
234
Чердачное перекрытие -24
-26
-28
-30
30
33
34
35
Деревянные полы над подвалом -24
-26
-28
-30
22
25
26
26

Рассмотрим пример расчета тепловых потерь двух разных комнат одной площади с помощью таблиц.

Пример 1.

Угловая комната (первый этаж)

Характеристики комнаты:

  • этаж первый,
  • площадь комнаты - 16 кв.м. (5х3,2),
  • высота потолка - 2,75 м,
  • наружных стен - две,
  • материал и толщина наружных стен - брус толщиной 18 см, обшит гипсокартонном и оклеен обоями,
  • окна - два (высота 1,6 м, ширина 1,0 м) с двойным остеклением,
  • полы - деревянные утепленные, снизу подвал,
  • выше чердачное перекрытие,
  • расчетная наружная температура -30 °С,
  • требуемая температура в комнате +20 °С.

Площадь наружных стен за вычетом окон:

S стен (5+3,2)х2,7-2х1,0х1,6 = 18,94 кв. м.

Площадь окон:

S окон = 2х1,0х1,6 = 3,2 кв. м.

Площадь пола:

S пола = 5х3,2 = 16 кв. м.

Площадь потолка:

S потолка = 5х3,2 = 16 кв. м.

Площадь внутренних перегородок в расчете не участвует, так как через них тепло не уходит - ведь по обе стороны перегородки температура одинакова. Тоже относится и к внутренней двери.

Теперь вычислим теплопотери каждой из поверхностей:

Q суммарные = 3094 Вт.

Заметим, что через стены уходит тепла больше чем через окна, полы и потолок.

Результат расчета показывает теплопотери комнаты в самые морозные (Т нар.= -30 °С) дни года. Естественно, чем теплее на улице, тем меньше уйдет из комнаты тепла.

Пример 2

Комната под крышей (мансарда)

Характеристики комнаты:

  • этаж верхний,
  • площадь 16 кв.м. (3,8х4,2),
  • высота потолка 2,4 м,
  • наружные стены; два ската крыши (шифер, сплошная обрешетка, 10 см минваты, вагонка), фронтоны (брус толщиной 10 см, обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 см),
  • окна - четыре (по два на каждом фронтоне), высотой 1,6 м и шириной 1,0 м с двойным остеклением,
  • расчетная наружная температура -30°С,
  • требуемая температура в комнате +20°С.

Рассчитаем площади теплоотдающих поверхностей.

Площадь торцевых наружных стен за вычетом окон:

S торц.стен = 2х(2,4х3,8-0,9х0,6-2х1,6х0,8) = 12 кв. м.

Площадь скатов крыши, ограничивающих комнату:

S скатов.стен = 2х1,0х4,2 = 8,4 кв. м.

Площадь боковых перегородок:

S бок.перегор = 2х1,5х4,2 = 12,6 кв. м.

Площадь окон:

S окон = 4х1,6х1,0 = 6,4 кв. м.

Площадь потолка:

S потолка = 2,6х4,2 = 10,92 кв. м.

Теперь рассчитаем тепловые потери этих поверхностей, при этом учтем, что через пол тепло не уходит (там теплое помещение). Теплопотери для стен и потолка мы считаем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

Суммарные теплопотери комнаты составят:

Q суммарные = 4504 Вт.

Как видим, теплая комната первого этажа теряет (или потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы такое помещение сделать пригодным для зимнего проживания, нужно в первую очередь утеплять стены, боковые перегородки и окна.

Любая ограждающая конструкция может быть представлена в виде многослойной стены, каждый слой которой имеет свое тепловое сопротивление и свое сопротивление прохождению воздуха. Сложив тепловое сопротивление всех слоев, получим тепловое сопротивление всей стены. Также суммируя сопротивление прохождению воздуха всех слоев, поймем, как дышит стена. Идеальная стена из бруса должна быть эквивалентна стене из бруса толщиной 15 - 20 см. Приведенная ниже таблица поможет в этом.

Таблица - Сопротивление теплопередаче и прохождению воздуха различных материалов ΔT=40 °С (Т нар. =-20 °С, Т внутр. =20 °С.)


Слой стены
Толщина
слоя
стены
Сопротивление
теплопередаче слоя стены
Сопротивл.
воздухопро-
ницаемости
эквивалентно
брусовой стене
толщиной
(см)
Ro,Эквивалент
кирпичной
кладке
толщиной
(см)
Кирпичная кладка из обычного
глиняного кирпича толщиной:

12 см
25 см
50 см
75 см

12
25
50
75
0,15
0,3
0,65
1,0
12
25
50
75
6
12
24
36
Кладка из керамзитобетонных блоков
толщиной 39 см с плотностью:

1000 кг / куб м
1400 кг / куб м
1800 кг / куб м

39
1,0
0,65
0,45
75
50
34
17
23
26
Пено- газобетон толщиной 30 см
плотностью:

300 кг / куб м
500 кг / куб м
800 кг / куб м

30
2,5
1,5
0,9
190
110
70
7
10
13
Брусовал стена толщиной (сосна)

10 см
15 см
20 см

10
15
20
0,6
0,9
1,2
45
68
90
10
15
20

Для объективной картины теплопотерь всего дома необходимо учесть

  1. Потери тепла через контакт фундамента с мерзлым грунтом обычно принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
  2. Потери тепла, связанные с вентиляцией. Эти потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же обьем свежего воздуха. Таким образом, потери связанные с вентиляцией, составляют немногим меньше сумме теплопотерь приходящиеся на ограждающие конструкции. Получается, что потери тепла через стены и остекление составляет только 40%, а потери тепла на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение тепловых потерь составляют 30% и 60%.
  3. Если стена «дышит», как стена из бруса или бревна толщиной 15 - 20 см, то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%, поэтому полученную при расчете величину теплового сопротивления стены следует умножить на 1,3 (или соответственно уменьшить теплопотери).

Суммировав все теплопотери дома, Вы определите, какой мощности генератор тепла (котел) и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, расчеты подобного рода покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Рассчитать расход тепла можно и по укрупненным показателям. Так, в одно- и двухэтажных не сильно утепленных домах при наружной температуре -25 °С требуется 213 Вт на один квадратный метр общей площади, а при -30 °С - 230 Вт. Для хорошо утепленных домов - это: при -25 °С - 173 Вт на кв.м. общей площади, а при -30 °С - 177 Вт.

  1. Стоимость теплоизоляции относительно стоимости всего дома существенно мала, однако при эксплуатации здания основные затраты приходятся именно на отопление. На теплоизоляции ни в коем случае нельзя экономить, особенно при комфортном проживании на больших площадях. Цены на энергоносители во всем мире постоянно повышаются.
  2. Современные строительные материалы обладают более высоким термическим сопротивлением, чем материалы традиционные. Это позволяет делать стены тоньше, а значит, дешевле и легче. Все это хорошо, но у тонких стен меньше теплоемкость, то есть они хуже запасают тепло. Топить приходиться постоянно - стены быстро нагреваются и быстро остывают. В старых домах с толстыми стенами жарким летним днем прохладно, остывшие за ночь стены «накопили холод».
  3. Утепление необходимо рассматривать совместно с воздухопроницаемостью стен. Если увеличение теплового сопротивления стен связано со значительным уменьшением воздухопроницаемости, то не следует его применять. Идеальная стена по воздухопроницаемости эквивалентна стене из бруса толщиной 15…20 см.
  4. Очень часто, неправильное применение пароизоляции приводит к ухудшению санитарно-гигиенических свойств жилья. При правильно организованной вентиляции и «дышащих» стенах она излишня, а при плохо воздухопроницаемых стенах это ненужно. Основное ее назначение это предотвращение инфильтрации стен и защита утепления от ветра.
  5. Утепление стен снаружи существенно эффективнее внутреннего утепления.
  6. Не следует бесконечно утеплять стены. Эффективность такого подхода к энергосбережению - не высока.
  7. Вентиляция - вот основные резервы энергосбережения.
  8. Применив современные системы остекления (стеклопакеты, теплозащитное стекло и т.п.), низкотемпературные обогревающие системы, эффективную теплоизоляцию ограждающих конструкций, можно сократить затраты на отопление в 3 раза.

Варианты дополнительного утепления конструкций зданий на базе строительной теплоизоляции типа «ISOVER», при наличии в помещениях систем воздухообмена и вентиляции.

  • Как правильно расставить отопительные приборы и повысить их эффективность
  • Теплопотери дома

  • Первый шаг в организации отопления частного дома — расчет теплопотерь. Цель этого расчета — выяснить, сколько тепла уходит наружу сквозь стены, полы, кровлю и окна (общее название — ограждающие конструкции) при самых суровых морозах в данной местности. Зная, как рассчитать теплопотери по правилам, можно получить довольно точный результат и приступить к подбору источника тепла по мощности.

    Базовые формулы

    Чтобы получить более-менее точный результат, необходимо выполнять вычисления по всем правилам, упрощенная методика (100 Вт теплоты на 1 м² площади) здесь не подойдет. Общие потери теплоты зданием в холодное время года складываются из 2 частей:

    • теплопотерь через ограждающие конструкции;
    • потерь энергии, идущей на нагрев вентиляционного воздуха.

    Базовая формула для подсчета расхода тепловой энергии через наружные ограждения выглядит следующим образом:

    Q = 1/R х (t в — t н) х S х (1+ ∑β). Здесь:

    • Q — количество тепла, теряемого конструкцией одного типа, Вт;
    • R — термическое сопротивление материала конструкции, м²°С / Вт;
    • S — площадь наружного ограждения, м²;
    • t в — температура внутреннего воздуха, °С;
    • t н — наиболее низкая температура окружающей среды, °С;
    • β — добавочные теплопотери, зависящие от ориентации здания.

    Термическое сопротивление стен либо кровли здания определяется исходя из свойств материала, из которого они сделаны, и толщины конструкции. Для этого используется формула R = δ / λ, где:

    • λ — справочное значение теплопроводности материала стены, Вт/(м°С);
    • δ — толщина слоя из этого материала, м.

    Если стена возведена из 2 материалов (например, кирпич с утеплителем из минваты), то термическое сопротивление рассчитывается для каждого из них, а результаты суммируются. Уличная температура выбирается как по нормативным документам, так и по личным наблюдениям, внутренняя — по необходимости. Добавочные теплопотери — это коэффициенты, определенные нормами:

    1. Когда стена либо часть кровли повернута на север, северо-восток или северо-запад, то β = 0,1.
    2. Если конструкция обращена на юго-восток или запад, β = 0,05.
    3. β = 0, когда наружное ограждение выходит на южную или юго-западную сторону.

    Порядок выполнения вычислений

    Чтобы учесть все тепло, уходящее из дома, необходимо сделать расчет теплопотерь помещения, причем каждого по отдельности. Для этого производятся замеры всех ограждений, соседствующих с окружающей средой: стен, окон, крыши, пола и дверей.



    Важный момент: обмеры следует выполнять по внешней стороне, захватывая углы строения, иначе расчет теплопотерь дома даст заниженный расход тепла.

    Окна и двери измеряются по проему, который они заполняют.

    По результатам замеров рассчитывается площадь каждой конструкции и подставляется в первую формулу (S, м²). Туда же вставляется значение R, полученное делением толщины ограждения на коэффициент теплопроводности строительного материала. В случае с новыми окнами из металлопластика величину R вам подскажет представитель фирмы-установщика.

    В качестве примера стоит провести расчет теплопотерь через ограждающие стены из кирпича толщиной 25 см, площадью 5 м² при температуре окружающей среды -25°С. Предполагается, что внутри температура составит +20°С, а плоскость конструкции обращена к северу (β = 0,1). Сначала нужно взять из справочной литературы коэффициент теплопроводности кирпича (λ), он равен 0,44 Вт/(м°С). Затем по второй формуле вычисляется сопротивление передаче тепла кирпичной стены 0,25 м:

    R = 0,25 / 0.44 = 0,57 м²°С / Вт

    Чтобы определить теплопотери помещения с этой стенкой, все исходные данные надо подставить в первую формулу:

    Q = 1 / 0,57 х (20 — (-25)) х 5 х (1 + 0,1) = 434 Вт = 4.3 кВт

    Если в комнате имеется окно, то после вычисления его площади следует таким же образом определить теплопотери сквозь светопрозрачный проем. Такие же действия повторяются относительно полов, кровли и входной двери. В конце все результаты суммируются, после чего можно переходить к следующему помещению.

    Учет тепла на подогрев воздуха

    Выполняя расчет теплопотерь здания, важно учесть количество тепловой энергии, расходуемой системой отопления на подогрев вентиляционного воздуха. Доля этой энергии достигает 30% от общих потерь, поэтому игнорировать ее недопустимо. Рассчитать вентиляционные теплопотери дома можно через теплоемкость воздуха с помощью популярной формулы из курса физики:

    Q возд = cm (t в — t н). В ней:

    • Q возд — тепло, расходуемое системой отопления на прогрев приточного воздуха, Вт;
    • t в и t н — то же, что в первой формуле, °С;
    • m — массовый расход воздуха, попадающего в дом снаружи, кг;
    • с — теплоемкость воздушной смеси, равна 0.28 Вт / (кг °С).

    Здесь все величины известны, кроме массового расхода воздуха при вентиляции помещений. Чтобы не усложнять себе задачу, стоит согласиться с условием, что воздушная среда обновляется во всем доме 1 раз в час. Тогда объемный расход воздуха нетрудно посчитать путем сложения объемов всех помещений, а затем нужно перевести его в массовый через плотность. Поскольку плотность воздушной смеси меняется в зависимости от его температуры, нужно взять подходящее значение из таблицы:


    m = 500 х 1,422 = 711 кг/ч

    Подогрев такой массы воздуха на 45°С потребует такого количества теплоты:

    Q возд = 0.28 х 711 х 45 = 8957 Вт, что примерно равно 9 кВт.

    По окончании расчетов результаты тепловых потерь сквозь наружные ограждения суммируются с вентиляционными теплопотерями, что дает общую тепловую нагрузку на систему отопления здания.

    Представленные методики вычислений можно упростить, если формулы ввести в программу Excel в виде таблиц с данными, это существенно ускорит проведение расчета.