The order of the digits after the million. What is the name of the largest number in the world

In everyday life, most people operate with fairly small numbers. Tens, hundreds, thousands, very rarely - millions, almost never - billions. Approximately such numbers are limited to the usual idea of ​​\u200b\u200bman about quantity or magnitude. Almost everyone has heard about trillions, but few have ever used them in any calculations.

What are giant numbers?

Meanwhile, the numbers denoting the powers of a thousand have been known to people for a long time. In Russia and many other countries, a simple and logical notation system is used:

One thousand;
Million;
Billion;
Trillion;
quadrillion;
Quintillion;
Sextillion;
Septillion;
Octillion;
Quintillion;
Decillion.

In this system, each next number is obtained by multiplying the previous one by a thousand. A billion is commonly referred to as a billion.

Many adults can accurately write such numbers as a million - 1,000,000 and a billion - 1,000,000,000. It’s already more difficult with a trillion, but almost everyone can handle it - 1,000,000,000,000. And then the territory unknown to many begins.

Getting to know the big numbers

However, there is nothing complicated, the main thing is to understand the system for the formation of large numbers and the principle of naming. As already mentioned, each next number exceeds the previous one by a thousand times. This means that in order to correctly write the next number in ascending order, you need to add three more zeros to the previous one. That is, a million has 6 zeros, a billion has 9, a trillion has 12, a quadrillion has 15, and a quintillion has 18.

You can also deal with the names if you wish. The word "million" comes from the Latin "mille", which means "more than a thousand". The following numbers were formed by adding the Latin words "bi" (two), "three" (three), "quadro" (four), etc.

Now let's try to imagine these numbers visually. Most people have a pretty good idea of ​​the difference between a thousand and a million. Everyone understands that a million rubles is good, but a billion is more. Much more. Also, everyone has an idea that a trillion is something absolutely immense. But how much is a trillion more than a billion? How huge is it?

For many, beyond a billion, the concept of "the mind is incomprehensible" begins. Indeed, a billion kilometers or a trillion - the difference is not very big in the sense that such a distance still cannot be covered in a lifetime. A billion rubles or a trillion is also not very different, because you still can’t earn that kind of money in a lifetime. But let's count a little, connecting the fantasy.

Housing stock in Russia and four football fields as examples

For every person on earth, there is a land area measuring 100x200 meters. That's about four football fields. But if there are not 7 billion people, but seven trillion, then everyone will get only a piece of land 4x5 meters. Four football fields against the area of ​​the front garden in front of the entrance - this is the ratio of a billion to a trillion.

In absolute terms, the picture is also impressive.

If you take a trillion bricks, you can build more than 30 million one-story houses with an area of ​​100 square meters. That is about 3 billion square meters of private development. This is comparable to the total housing stock of the Russian Federation.

If you build ten-story houses, you will get about 2.5 million houses, that is, 100 million two-three-room apartments, about 7 billion square meters of housing. This is 2.5 times more than the entire housing stock in Russia.

In a word, there will not be a trillion bricks in all of Russia.

One quadrillion student notebooks will cover the entire territory of Russia with a double layer. And one quintillion of the same notebooks will cover the entire land with a layer 40 centimeters thick. If you manage to get a sextillion notebooks, then the entire planet, including the oceans, will be under a layer 100 meters thick.

Count to a decillion

Let's count some more. For example, a matchbox magnified a thousand times would be the size of a sixteen-story building. An increase of a million times will give a "box", which is larger than St. Petersburg in area. Magnified a billion times, the boxes won't fit on our planet. On the contrary, the Earth will fit in such a "box" 25 times!

An increase in the box gives an increase in its volume. It will be almost impossible to imagine such volumes with a further increase. For ease of perception, let's try to increase not the object itself, but its quantity, and arrange the matchboxes in space. This will make it easier to navigate. A quintillion of boxes laid out in one row would stretch beyond the star α Centauri by 9 trillion kilometers.

Another thousandfold magnification (sextillion) will allow matchboxes lined up to block our entire Milky Way galaxy in the transverse direction. A septillion matchboxes would span 50 quintillion kilometers. Light can travel this distance in 5,260,000 years. And the boxes laid out in two rows would stretch to the Andromeda galaxy.

There are only three numbers left: octillion, nonillion and decillion. You have to exercise your imagination. An octillion of boxes forms a continuous line of 50 sextillion kilometers. That's over five billion light years. Not every telescope mounted on one edge of such an object would be able to see its opposite edge.

Do we count further? A nonillion matchboxes would fill the entire space of the part of the Universe known to mankind with an average density of 6 pieces per cubic meter. By earthly standards, it seems to be not very much - 36 matchboxes in the back of a standard Gazelle. But a nonillion matchboxes will have a mass billions of times greater than the mass of all material objects in the known universe combined.

Decillion. The magnitude, and rather even the majesty of this giant from the world of numbers, is hard to imagine. Just one example - six decillion boxes would no longer fit in the entire part of the universe accessible to mankind for observation.

Even more strikingly, the majesty of this number is visible if you do not multiply the number of boxes, but increase the object itself. A matchbox enlarged by a factor of a decillion would contain the entire known part of the universe 20 trillion times. It is impossible to even imagine such a thing.

Small calculations showed how huge the numbers known to mankind for several centuries are. In modern mathematics, numbers many times greater than a decillion are known, but they are used only in complex mathematical calculations. Only professional mathematicians have to deal with such numbers.

The most famous (and smallest) of these numbers is the googol, denoted by one followed by one hundred zeros. A googol is greater than the total number of elementary particles in the visible part of the Universe. This makes the googol an abstract number that has little practical use.

Back in the fourth grade, I was interested in the question: "What are the numbers more than a billion called? And why?". Since then, I have been looking for all the information on this issue for a long time and collecting it bit by bit. But with the advent of access to the Internet, the search has accelerated significantly. Now I present all the information I found so that others can answer the question: "What are large and very large numbers called?".

A bit of history

The southern and eastern Slavic peoples used alphabetical numbering to record numbers. Moreover, among the Russians, not all letters played the role of numbers, but only those that are in the Greek alphabet. Above the letter, denoting a number, a special "titlo" icon was placed. At the same time, the numerical values ​​of the letters increased in the same order as the letters in the Greek alphabet followed (the order of the letters of the Slavic alphabet was somewhat different).

In Russia, Slavic numbering survived until the end of the 17th century. Under Peter I, the so-called "Arabic numbering" prevailed, which we still use today.

There were also changes in the names of the numbers. For example, until the 15th century, the number "twenty" was designated as "two ten" (two tens), but then it was reduced for faster pronunciation. Until the 15th century, the number "forty" was denoted by the word "fourty", and in the 15-16th centuries this word was supplanted by the word "forty", which originally meant a bag in which 40 squirrel or sable skins were placed. There are two options about the origin of the word "thousand": from the old name "fat hundred" or from a modification of the Latin word centum - "one hundred".

The name "million" first appeared in Italy in 1500 and was formed by adding an augmentative suffix to the number "mille" - a thousand (i.e. it meant "big thousand"), it penetrated into the Russian language later, and before that the same meaning in Russian was denoted by the number "leodr". The word "billion" came into use only from the time of the Franco-Prussian war (1871), when the French had to pay Germany an indemnity of 5,000,000,000 francs. Like "million", the word "billion" comes from the root "thousand" with the addition of an Italian magnifying suffix. In Germany and America, for some time, the word "billion" meant the number 100,000,000; this explains why the word billionaire was used in America before any of the rich had $1,000,000,000. In the old (XVIII century) "Arithmetic" of Magnitsky, there is a table of names of numbers, brought to the "quadrillion" (10 ^ 24, according to the system through 6 digits). Perelman Ya.I. in the book "Entertaining Arithmetic" the names of large numbers of that time are given, somewhat different from today: septillion (10 ^ 42), octalion (10 ^ 48), nonalion (10 ^ 54), decalion (10 ^ 60), endecalion (10 ^ 66), dodecalion (10 ^ 72) and it is written that "there are no further names".

Principles of naming and the list of large numbers
All the names of large numbers are built in a rather simple way: at the beginning there is a Latin ordinal number, and at the end the suffix -million is added to it. The exception is the name "million" which is the name of the number thousand (mille) and the magnifying suffix -million. There are two main types of names for large numbers in the world:
3x + 3 system (where x is a Latin ordinal number) - this system is used in Russia, France, USA, Canada, Italy, Turkey, Brazil, Greece
and the 6x system (where x is a Latin ordinal number) - this system is the most common in the world (for example: Spain, Germany, Hungary, Portugal, Poland, Czech Republic, Sweden, Denmark, Finland). In it, the missing intermediate 6x + 3 ends with the suffix -billion (from it we borrowed a billion, which is also called a billion).

The general list of numbers used in Russia is presented below:

Number Name Latin numeral SI magnifier SI diminutive prefix Practical value
10 1 ten deca- deci- Number of fingers on 2 hands
10 2 one hundred hecto- centi- Approximately half the number of all states on Earth
10 3 one thousand kilo- Milli- Approximate number of days in 3 years
10 6 million unus (I) mega- micro- 5 times the number of drops in a 10 liter bucket of water
10 9 billion (billion) duo(II) giga- nano Approximate population of India
10 12 trillion tres(III) tera- pico- 1/13 of the gross domestic product of Russia in rubles for 2003
10 15 quadrillion quattor(IV) peta- femto- 1/30 of the length of a parsec in meters
10 18 quintillion quinque (V) exa- atto- 1/18 of the number of grains from the legendary award to the inventor of chess
10 21 sextillion sex (VI) zetta- zepto- 1/6 of the mass of the planet Earth in tons
10 24 septillion septem(VII) yotta- yocto- Number of molecules in 37.2 liters of air
10 27 octillion octo(VIII) no- sieve- Half the mass of Jupiter in kilograms
10 30 quintillion novem(IX) dea- tredo- 1/5 of all microorganisms on the planet
10 33 decillion decem(X) una- revo- Half the mass of the Sun in grams

The pronunciation of the numbers that follow is often different.
Number Name Latin numeral Practical value
10 36 andecillion undecim (XI)
10 39 duodecillion duodecim(XII)
10 42 tredecillion tredecim(XIII) 1/100 of the number of air molecules on Earth
10 45 quattordecillion quattuordecim (XIV)
10 48 quindecillion quindecim (XV)
10 51 sexdecillion sedecim (XVI)
10 54 septemdecillion septendecim (XVII)
10 57 octodecillion So many elementary particles in the sun
10 60 novemdecillion
10 63 vigintillion viginti (XX)
10 66 anvigintillion unus et viginti (XXI)
10 69 duovigintillion duo et viginti (XXII)
10 72 trevigintillion tres et viginti (XXIII)
10 75 quattorvigintillion
10 78 quinvigintillion
10 81 sexvigintillion So many elementary particles in the universe
10 84 septemvigintillion
10 87 octovigintillion
10 90 novemvigintillion
10 93 trigintillion triginta (XXX)
10 96 antirigintillion
    ...
  • 10 100 - googol (the number was invented by the 9-year-old nephew of the American mathematician Edward Kasner)


  • 10 123 - quadragintillion (quadragaginta, XL)

  • 10 153 - quinquagintillion (quinquaginta, L)

  • 10 183 - sexagintillion (sexaginta, LX)

  • 10 213 - septuagintillion (septuaginta, LXX)

  • 10 243 - octogintillion (octoginta, LXXX)

  • 10 273 - nonagintillion (nonaginta, XC)

  • 10 303 - centillion (Centum, C)

Further names can be obtained either by direct or reverse order of Latin numerals (it is not known how to correctly):

  • 10 306 - ancentillion or centunillion

  • 10 309 - duocentillion or centduollion

  • 10 312 - trecentillion or centtrillion

  • 10 315 - quattorcentillion or centquadrillion

  • 10 402 - tretrigintacentillion or centtretrigintillion

I believe that the second spelling will be the most correct, since it is more consistent with the construction of numerals in the Latin language and avoids ambiguities (for example, in the number trecentillion, which in the first spelling is both 10903 and 10312).
Numbers next:
Some literary references:

  1. Perelman Ya.I. "Entertaining arithmetic". - M.: Triada-Litera, 1994, pp. 134-140

  2. Vygodsky M.Ya. "Handbook of Elementary Mathematics". - St. Petersburg, 1994, pp. 64-65

  3. "Encyclopedia of knowledge". - comp. IN AND. Korotkevich. - St. Petersburg: Owl, 2006, p. 257

  4. "Entertaining about physics and mathematics." - Kvant Library. issue 50. - M.: Nauka, 1988, p. 50

Once in childhood, we learned to count to ten, then to a hundred, then to a thousand. So what is the biggest number you know? A thousand, a million, a billion, a trillion ... And then? Petallion, someone will say, will be wrong, because he confuses the SI prefix with a completely different concept.

In fact, the question is not as simple as it seems at first glance. First, we are talking about naming the names of the powers of a thousand. And here, the first nuance that many people know from American films is that they call our billion a billion.

Further more, there are two types of scales - long and short. In our country, a short scale is used. In this scale, at each step, the mantis increases by three orders of magnitude, i.e. multiply by a thousand - a thousand 10 3, a million 10 6, a billion / billion 10 9, a trillion (10 12). In the long scale, after a billion 10 9 comes a billion 10 12, and in the future the mantisa already increases by six orders of magnitude, and the next number, which is called a trillion, already stands for 10 18.

But back to our native scale. Want to know what comes after a trillion? Please:

10 3 thousand
10 6 million
10 9 billion
10 12 trillion
10 15 quadrillion
10 18 quintillion
10 21 sextillion
10 24 septillion
10 27 octillion
10 30 nonillion
10 33 decillion
10 36 undecillion
10 39 dodecillion
10 42 tredecillion
10 45 quattuordecillion
10 48 quindecillion
10 51 sedecillion
10 54 septdecillion
10 57 duodevigintillion
10 60 undevigintillion
10 63 vigintillion
10 66 anvigintillion
10 69 duovigintillion
10 72 trevigintillion
10 75 quattorvigintillion
10 78 quinvintillion
10 81 sexwigintillion
10 84 septemvigintillion
10 87 octovigintillion
10 90 novemvigintillion
10 93 trigintillion
10 96 antirigintillion

On this number, our short scale does not stand up, and in the future, the mantissa increases progressively.

10 100 googol
10 123 quadragintillion
10 153 quinquagintillion
10,183 sexagintillion
10 213 septuagintillion
10,243 octogintillion
10,273 nonagintillion
10 303 centillion
10 306 centunillion
10 309 centduollion
10 312 centtrillion
10 315 centquadrillion
10 402 centtretrigintillion
10,603 decentillion
10 903 trecentillion
10 1203 quadringentillion
10 1503 quingentillion
10 1803 sescentillion
10 2103 septingentillion
10 2403 octingentillion
10 2703 nongentillion
10 3003 million
10 6003 duomillion
10 9003 tremillion
10 3000003 miamimiliaillion
10 6000003 duomyamimiliaillion
10 10 100 googolplex
10 3×n+3 zillion

googol(from the English googol) - a number, in the decimal number system, represented by a unit with 100 zeros:
10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
In 1938, the American mathematician Edward Kasner (Edward Kasner, 1878-1955) was walking in the park with his two nephews and discussing large numbers with them. During the conversation, we talked about a number with one hundred zeros, which did not have its own name. One of his nephews, nine-year-old Milton Sirotta, suggested calling this number "googol". In 1940, Edward Kasner, together with James Newman, wrote the popular science book "Mathematics and Imagination" ("New Names in Mathematics"), where he taught mathematics lovers about the googol number.
The term "googol" has no serious theoretical and practical significance. Kasner proposed it to illustrate the difference between an unimaginably large number and infinity, and for this purpose the term is sometimes used in the teaching of mathematics.

Googolplex(from the English googolplex) - a number represented by a unit with a googol of zeros. Like googol, the term googolplex was coined by American mathematician Edward Kasner and his nephew Milton Sirotta.
The number of googols is greater than the number of all particles in the part of the universe known to us, which ranges from 1079 to 1081. Thus, the number of googolplexes, consisting of (googol + 1) digits, cannot be written in the classical “decimal” form, even if all matter in the known turn parts of the universe into paper and ink or into computer disk space.

Zillion(eng. zillion) is a common name for very large numbers.

This term does not have a strict mathematical definition. In 1996, Conway (English J. H. Conway) and Guy (English R. K. Guy) in their book English. The Book of Numbers defined a zillion of the nth power as 10 3×n+3 for the short scale number naming system.

As a child, I was tormented by the question of what is the largest number, and I plagued almost everyone with this stupid question. Having learned the number one million, I asked if there was a number greater than a million. Billion? And more than a billion? Trillion? And more than a trillion? Finally, someone smart was found who explained to me that the question is stupid, since it is enough just to add one to the largest number, and it turns out that it has never been the largest, since there are even larger numbers.

And now, after many years, I decided to ask another question, namely: What is the largest number that has its own name? Fortunately, now there is an Internet and you can puzzle them with patient search engines that will not call my questions idiotic ;-). Actually, this is what I did, and here's what I found out as a result.

Number Latin name Russian prefix
1 unus en-
2 duo duo-
3 tres three-
4 quattuor quadri-
5 quinque quinti-
6 sex sexty
7 September septi-
8 octo octi-
9 novem noni-
10 decem deci-

There are two systems for naming numbers - American and English.

The American system is built quite simply. All names of large numbers are built like this: at the beginning there is a Latin ordinal number, and at the end the suffix -million is added to it. The exception is the name "million" which is the name of the number one thousand (lat. mille) and the magnifying suffix -million (see table). So the numbers are obtained - trillion, quadrillion, quintillion, sextillion, septillion, octillion, nonillion and decillion. The American system is used in the USA, Canada, France and Russia. You can find out the number of zeros in a number written in the American system using the simple formula 3 x + 3 (where x is a Latin numeral).

The English naming system is the most common in the world. It is used, for example, in Great Britain and Spain, as well as in most of the former English and Spanish colonies. The names of numbers in this system are built like this: like this: a suffix -million is added to the Latin numeral, the next number (1000 times larger) is built according to the principle - the same Latin numeral, but the suffix is ​​-billion. That is, after a trillion in the English system comes a trillion, and only then a quadrillion, followed by a quadrillion, and so on. Thus, a quadrillion according to the English and American systems are completely different numbers! You can find out the number of zeros in a number written in the English system and ending with the suffix -million using the formula 6 x + 3 (where x is a Latin numeral) and using the formula 6 x + 6 for numbers ending in -billion.

Only the number billion (10 9) passed from the English system into the Russian language, which, nevertheless, would be more correct to call it the way the Americans call it - a billion, since we have adopted the American system. But who in our country does something according to the rules! ;-) By the way, sometimes the word trilliard is also used in Russian (you can see for yourself by running a search in Google or Yandex) and it means, apparently, 1000 trillion, i.e. quadrillion.

In addition to numbers written using Latin prefixes in the American or English system, the so-called off-system numbers are also known, i.e. numbers that have their own names without any Latin prefixes. There are several such numbers, but I will talk about them in more detail a little later.

Let's go back to writing using Latin numerals. It would seem that they can write numbers to infinity, but this is not entirely true. Now I will explain why. First, let's see how the numbers from 1 to 10 33 are called:

Name Number
Unit 10 0
Ten 10 1
One hundred 10 2
One thousand 10 3
Million 10 6
Billion 10 9
Trillion 10 12
quadrillion 10 15
Quintillion 10 18
Sextillion 10 21
Septillion 10 24
Octillion 10 27
Quintillion 10 30
Decillion 10 33

And so, now the question arises, what next. What is a decillion? In principle, it is possible, of course, by combining prefixes to generate such monsters as: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion and novemdecillion, but these will already be compound names, and we were interested in our own names numbers. Therefore, according to this system, in addition to those indicated above, you can still get only three - vigintillion (from lat. viginti- twenty), centillion (from lat. percent- one hundred) and a million (from lat. mille- one thousand). The Romans did not have more than a thousand proper names for numbers (all numbers over a thousand were composite). For example, a million (1,000,000) Romans called centena milia i.e. ten hundred thousand. And now, actually, the table:

Thus, according to a similar system, numbers greater than 10 3003, which would have its own, non-compound name, cannot be obtained! But nevertheless, numbers greater than a million are known - these are the same off-system numbers. Finally, let's talk about them.

Name Number
myriad 10 4
googol 10 100
Asankheyya 10 140
Googolplex 10 10 100
Skuse's second number 10 10 10 1000
Mega 2 (in Moser notation)
Megiston 10 (in Moser notation)
Moser 2 (in Moser notation)
Graham number G 63 (in Graham's notation)
Stasplex G 100 (in Graham's notation)

The smallest such number is myriad(it is even in Dahl's dictionary), which means a hundred hundreds, that is, 10,000. True, this word is outdated and practically not used, but it is curious that the word "myriads" is widely used, which means not a certain number at all, but an innumerable, uncountable number of things. It is believed that the word myriad (English myriad) came to European languages ​​from ancient Egypt.

googol(from the English googol) is the number ten to the hundredth power, that is, one with one hundred zeros. The "googol" was first written about in 1938 in the article "New Names in Mathematics" in the January issue of the journal Scripta Mathematica by the American mathematician Edward Kasner. According to him, his nine-year-old nephew Milton Sirotta suggested calling a large number "googol". This number became well-known thanks to the search engine named after him. Google. Note that "Google" is a trademark and googol is a number.

In the famous Buddhist treatise Jaina Sutra, dating back to 100 BC, there is a number asankhiya(from Chinese asentzi- incalculable), equal to 10 140. It is believed that this number is equal to the number of cosmic cycles required to gain nirvana.

Googolplex(English) googolplex) - a number also invented by Kasner with his nephew and meaning one with a googol of zeros, that is, 10 10 100. Here is how Kasner himself describes this "discovery":

Words of wisdom are spoken by children at least as often as by scientists. The name "googol" was invented by a child (Dr. Kasner"s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. a googol, but is still finite, as the inventor of the name was quick to point out.

Mathematics and the Imagination(1940) by Kasner and James R. Newman.

Even more than a googolplex number, Skewes' number was proposed by Skewes in 1933 (Skewes. J. London Math. soc. 8 , 277-283, 1933.) in proving the Riemann conjecture concerning primes. It means e to the extent e to the extent e to the power of 79, that is, e e e 79. Later, Riele (te Riele, H. J. J. "On the Sign of the Difference P(x)-Li(x)." Math. Comput. 48 , 323-328, 1987) reduced the Skewes number to e e 27/4 , which is approximately equal to 8.185 10 370 . It is clear that since the value of the Skewes number depends on the number e, then it is not an integer, so we will not consider it, otherwise we would have to recall other non-natural numbers - the number pi, the number e, the Avogadro number, etc.

But it should be noted that there is a second Skewes number, which in mathematics is denoted as Sk 2 , which is even larger than the first Skewes number (Sk 1). Skuse's second number, was introduced by J. Skuse in the same article to denote the number up to which the Riemann hypothesis is valid. Sk 2 is equal to 10 10 10 10 3 , that is 10 10 10 1000 .

As you understand, the more degrees there are, the more difficult it is to understand which of the numbers is greater. For example, looking at the Skewes numbers, without special calculations, it is almost impossible to understand which of these two numbers is larger. Thus, for superlarge numbers, it becomes inconvenient to use powers. Moreover, you can come up with such numbers (and they have already been invented) when the degrees of degrees simply do not fit on the page. Yes, what a page! They won't even fit into a book the size of the entire universe! In this case, the question arises how to write them down. The problem, as you understand, is solvable, and mathematicians have developed several principles for writing such numbers. True, every mathematician who asked this problem came up with his own way of writing, which led to the existence of several, unrelated, ways to write numbers - these are the notations of Knuth, Conway, Steinhouse, etc.

Consider the notation of Hugo Stenhaus (H. Steinhaus. Mathematical Snapshots, 3rd edn. 1983), which is quite simple. Steinhouse suggested writing large numbers inside geometric shapes - a triangle, a square and a circle:

Steinhouse came up with two new super-large numbers. He named a number Mega, and the number is Megiston.

The mathematician Leo Moser refined Stenhouse's notation, which was limited by the fact that if it was necessary to write numbers much larger than a megiston, difficulties and inconveniences arose, since many circles had to be drawn one inside the other. Moser suggested drawing not circles after squares, but pentagons, then hexagons, and so on. He also proposed a formal notation for these polygons, so that numbers could be written without drawing complex patterns. Moser notation looks like this:

Thus, according to Moser's notation, Steinhouse's mega is written as 2, and megiston as 10. In addition, Leo Moser suggested calling a polygon with the number of sides equal to mega - megagon. And he proposed the number "2 in Megagon", that is, 2. This number became known as the Moser's number or simply as moser.

But the moser is not the largest number. The largest number ever used in a mathematical proof is the limiting value known as Graham number(Graham "s number), first used in 1977 in the proof of one estimate in Ramsey theory. It is associated with bichromatic hypercubes and cannot be expressed without a special 64-level system of special mathematical symbols introduced by Knuth in 1976.

Unfortunately, the number written in the Knuth notation cannot be translated into the Moser notation. Therefore, this system will also have to be explained. In principle, there is nothing complicated in it either. Donald Knuth (yes, yes, this is the same Knuth who wrote The Art of Programming and created the TeX editor) came up with the concept of superpower, which he proposed to write with arrows pointing up:

In general, it looks like this:

I think that everything is clear, so let's get back to Graham's number. Graham proposed the so-called G-numbers:

The number G 63 began to be called Graham number(it is often denoted simply as G). This number is the largest known number in the world and is even listed in the Guinness Book of Records. And, here, that the Graham number is greater than the Moser number.

P.S. In order to bring great benefit to all mankind and become famous for centuries, I decided to invent and name the largest number myself. This number will be called stasplex and it is equal to the number G 100 . Memorize it, and when your children ask what is the largest number in the world, tell them that this number is called stasplex.

Update (4.09.2003): Thank you all for the comments. It turned out that when writing the text, I made several mistakes. I'll try to fix it now.

  1. I made several mistakes at once, just mentioning Avogadro's number. First, several people have pointed out to me that 6.022 10 23 is actually the most natural number. And secondly, there is an opinion, and it seems to me true, that Avogadro's number is not a number at all in the proper, mathematical sense of the word, since it depends on the system of units. Now it is expressed in "mol -1", but if it is expressed, for example, in moles or something else, then it will be expressed in a completely different figure, but it will not stop being Avogadro's number at all.
  2. 10 000 - darkness
    100,000 - legion
    1,000,000 - leodre
    10,000,000 - Raven or Raven
    100 000 000 - deck
    Interestingly, the ancient Slavs also loved large numbers, they knew how to count up to a billion. Moreover, they called such an account a “small account”. In some manuscripts, the authors also considered the "great count", which reached the number 10 50 . About numbers greater than 10 50 it was said: "And more than this to bear the human mind to understand." The names used in the "small account" were transferred to the "great account", but with a different meaning. So, darkness meant no longer 10,000, but a million, legion - the darkness of those (million millions); leodrus - a legion of legions (10 to 24 degrees), then it was said - ten leodres, a hundred leodres, ..., and, finally, a hundred thousand legions of leodres (10 to 47); leodr leodr (10 to 48) was called a raven and, finally, a deck (10 to 49).
  3. The topic of national names of numbers can be expanded if we recall the Japanese system of naming numbers that I forgot, which is very different from the English and American systems (I will not draw hieroglyphs, if anyone is interested, then they are):
    100-ichi
    10 1 - jyuu
    10 2 - hyaku
    103-sen
    104 - man
    108-oku
    10 12 - chou
    10 16 - kei
    10 20 - gai
    10 24 - jyo
    10 28 - jyou
    10 32 - kou
    10 36-kan
    10 40 - sei
    1044 - sai
    1048 - goku
    10 52 - gougasya
    10 56 - asougi
    10 60 - nayuta
    1064 - fukashigi
    10 68 - murioutaisuu
  4. Regarding the numbers of Hugo Steinhaus (in Russia, for some reason, his name was translated as Hugo Steinhaus). botev assures that the idea of ​​writing super-large numbers in the form of numbers in circles does not belong to Steinhouse, but to Daniil Kharms, who, long before him, published this idea in the article "Raising the Number". I also want to thank Evgeny Sklyarevsky, the author of the most interesting site on entertaining mathematics on the Russian-speaking Internet - Arbuz, for the information that Steinhouse came up with not only the numbers mega and megiston, but also proposed another number mezzanine, which is (in his notation) "circled 3".
  5. Now for the number myriad or myrioi. There are different opinions about the origin of this number. Some believe that it originated in Egypt, while others believe that it was born only in ancient Greece. Be that as it may, in fact, the myriad gained fame precisely thanks to the Greeks. Myriad was the name for 10,000, and there were no names for numbers over ten thousand. However, in the note "Psammit" (i.e., the calculus of sand), Archimedes showed how one can systematically build and name arbitrarily large numbers. In particular, placing 10,000 (myriad) grains of sand in a poppy seed, he finds that in the Universe (a ball with a diameter of a myriad of Earth diameters) no more than 10 63 grains of sand would fit (in our notation). It is curious that modern calculations of the number of atoms in the visible universe lead to the number 10 67 (only a myriad of times more). The names of the numbers Archimedes suggested are as follows:
    1 myriad = 10 4 .
    1 di-myriad = myriad myriad = 10 8 .
    1 tri-myriad = di-myriad di-myriad = 10 16 .
    1 tetra-myriad = three-myriad three-myriad = 10 32 .
    etc.

If there are comments -

Have you ever wondered how many zeros there are in one million? This is a pretty simple question. What about a billion or a trillion? One followed by nine zeros (1000000000) - what is the name of the number?

A short list of numbers and their quantitative designation

  • Ten (1 zero).
  • One hundred (2 zeros).
  • Thousand (3 zeros).
  • Ten thousand (4 zeros).
  • One hundred thousand (5 zeros).
  • Million (6 zeros).
  • Billion (9 zeros).
  • Trillion (12 zeros).
  • Quadrillion (15 zeros).
  • Quintillion (18 zeros).
  • Sextillion (21 zeros).
  • Septillion (24 zeros).
  • Octalion (27 zeros).
  • Nonalion (30 zeros).
  • Decalion (33 zeros).

Grouping zeros

1000000000 - what is the name of the number that has 9 zeros? It's a billion. For convenience, large numbers are grouped into three sets, separated from each other by a space or punctuation marks such as a comma or period.

This is done to make it easier to read and understand the quantitative value. For example, what is the name of the number 1000000000? In this form, it is worth a little naprechis, count. And if you write 1,000,000,000, then immediately the task becomes easier visually, so you need to count not zeros, but triples of zeros.

Numbers with too many zeros

Of the most popular are million and billion (1000000000). What is a number with 100 zeros called? This is the googol number, also called by Milton Sirotta. That's a wildly huge number. Do you think this is a big number? Then what about a googolplex, a one followed by a googol of zeros? This figure is so large that it is difficult to come up with a meaning for it. In fact, there is no need for such giants, except to count the number of atoms in the infinite Universe.

Is 1 billion a lot?

There are two scales of measurement - short and long. Worldwide in science and finance, 1 billion is 1,000 million. This is on a short scale. According to her, this is a number with 9 zeros.

There is also a long scale, which is used in some European countries, including France, and was formerly used in the UK (until 1971), where a billion was 1 million million, that is, one and 12 zeros. This gradation is also called the long-term scale. The short scale is now predominant in financial and scientific matters.

Some European languages ​​such as Swedish, Danish, Portuguese, Spanish, Italian, Dutch, Norwegian, Polish, German use a billion (or a billion) characters in this system. In Russian, a number with 9 zeros is also described for a short scale of a thousand million, and a trillion is a million million. This avoids unnecessary confusion.

Conversational options

In Russian colloquial speech after the events of 1917 - the Great October Revolution - and the period of hyperinflation in the early 1920s. 1 billion rubles was called "limard". And in the dashing 1990s, a new slang expression “watermelon” appeared for a billion, a million was called a “lemon”.

The word "billion" is now used internationally. This is a natural number, which is displayed in the decimal system as 10 9 (one and 9 zeros). There is also another name - a billion, which is not used in Russia and the CIS countries.

Billion = billion?

Such a word as a billion is used to denote a billion only in those states in which the "short scale" is taken as the basis. These countries are the Russian Federation, the United Kingdom of Great Britain and Northern Ireland, the USA, Canada, Greece and Turkey. In other countries, the concept of a billion means the number 10 12, that is, one and 12 zeros. In countries with a "short scale", including Russia, this figure corresponds to 1 trillion.

Such confusion appeared in France at a time when the formation of such a science as algebra was taking place. The billion originally had 12 zeros. However, everything changed after the appearance of the main manual on arithmetic (author Tranchan) in 1558), where a billion is already a number with 9 zeros (a thousand million).

For several subsequent centuries, these two concepts were used on a par with each other. In the middle of the 20th century, namely in 1948, France switched to a long scale system of numerical names. In this regard, the short scale, once borrowed from the French, is still different from the one they use today.

Historically, the United Kingdom has used the long-term billion, but since 1974 UK official statistics have used the short-term scale. Since the 1950s, the short-term scale has been increasingly used in the fields of technical writing and journalism, even though the long-term scale was still maintained.