Дробно рациональные уравнения определения с авторами. Рациональные уравнения


Продолжаем разговор про решение уравнений . В этой статье мы подробно остановимся на рациональных уравнениях и принципах решения рациональных уравнений с одной переменной. Сначала разберемся, уравнения какого вида называются рациональными, дадим определение целых рациональных и дробных рациональных уравнений, приведем примеры. Дальше получим алгоритмы решения рациональных уравнений, и, конечно же, рассмотрим решения характерных примеров со всеми необходимыми пояснениями.

Навигация по странице.

Отталкиваясь от озвученных определений, приведем несколько примеров рациональных уравнений. Например, x=1 , 2·x−12·x 2 ·y·z 3 =0 , , - это все рациональные уравнения.

Из показанных примеров видно, что рациональные уравнения, как, впрочем, и уравнения других видов, могут быть как с одной переменной, так и с двумя, тремя и т.д. переменными. В следующих пунктах мы будем говорить о решении рациональных уравнений с одной переменной. Решение уравнений с двумя переменными и их большим числом заслуживают отдельного внимания.

Помимо деления рациональных уравнений по количеству неизвестных переменных, их еще разделяют на целые и дробные. Дадим соответствующие определения.

Определение.

Рациональное уравнение называют целым , если и левая, и правая его части являются целыми рациональными выражениями.

Определение.

Если хотя бы одна из частей рационального уравнения является дробным выражением, то такое уравнение называется дробно рациональным (или дробным рациональным).

Понятно, что целые уравнения не содержат деления на переменную, напротив, дробные рациональные уравнения обязательно содержат деление на переменную (или переменную в знаменателе). Так 3·x+2=0 и (x+y)·(3·x 2 −1)+x=−y+0,5 – это целые рациональные уравнения, обе их части являются целыми выражениями. А и x:(5·x 3 +y 2)=3:(x−1):5 – примеры дробных рациональных уравнений.

Завершая этот пункт, обратим внимание на то, что известные к этому моменту линейные уравнения и квадратные уравнения являются целыми рациональными уравнениями.

Решение целых уравнений

Одним из основных подходов к решению целых уравнений является их сведение к равносильным алгебраическим уравнениям . Это можно сделать всегда, выполнив следующие равносильные преобразования уравнения :

  • сначала выражение из правой части исходного целого уравнения переносят в левую часть с противоположным знаком, чтобы получить нуль в правой части;
  • после этого в левой части уравнения образовавшееся стандартного вида.

В результате получается алгебраическое уравнение, которое равносильно исходному целому уравнению. Так в самых простых случаях решение целых уравнений сводятся к решению линейных или квадратных уравнений, а в общем случае – к решению алгебраического уравнения степени n . Для наглядности разберем решение примера.

Пример.

Найдите корни целого уравнения 3·(x+1)·(x−3)=x·(2·x−1)−3 .

Решение.

Сведем решение этого целого уравнения к решению равносильного ему алгебраического уравнения. Для этого, во-первых, перенесем выражение из правой части в левую, в результате приходим к уравнению 3·(x+1)·(x−3)−x·(2·x−1)+3=0 . И, во-вторых, преобразуем выражение, образовавшееся в левой части, в многочлен стандартного вида, выполнив необходимые : 3·(x+1)·(x−3)−x·(2·x−1)+3= (3·x+3)·(x−3)−2·x 2 +x+3= 3·x 2 −9·x+3·x−9−2·x 2 +x+3=x 2 −5·x−6 . Таким образом, решение исходного целого уравнения сводится к решению квадратного уравнения x 2 −5·x−6=0 .

Вычисляем его дискриминант D=(−5) 2 −4·1·(−6)=25+24=49 , он положительный, значит, уравнение имеет два действительных корня, которые находим по формуле корней квадратного уравнения :

Для полной уверенности выполним проверку найденных корней уравнения . Сначала проверяем корень 6 , подставляем его вместо переменной x в исходное целое уравнение: 3·(6+1)·(6−3)=6·(2·6−1)−3 , что то же самое, 63=63 . Это верное числовое равенство, следовательно, x=6 действительно является корнем уравнения. Теперь проверяем корень −1 , имеем 3·(−1+1)·(−1−3)=(−1)·(2·(−1)−1)−3 , откуда, 0=0 . При x=−1 исходное уравнение также обратилось в верное числовое равенство, следовательно, x=−1 тоже является корнем уравнения.

Ответ:

6 , −1 .

Здесь еще нужно заметить, что с представлением целого уравнения в виде алгебраического уравнения связан термин «степень целого уравнения». Дадим соответствующее определение:

Определение.

Степенью целого уравнения называют степень равносильного ему алгебраического уравнения.

Согласно этому определению целое уравнение из предыдущего примера имеет вторую степень.

На этом можно бы было закончить с решением целых рациональных уравнений, если бы ни одно но…. Как известно, решение алгебраических уравнений степени выше второй сопряжено со значительными сложностями, а для уравнений степени выше четвертой вообще не существует общих формул корней. Поэтому для решения целых уравнений третьей, четвертой и более высоких степеней часто приходится прибегать к другим методам решения.

В таких случаях иногда выручает подход к решению целых рациональных уравнений, основанный на методе разложения на множители . При этом придерживаются следующего алгоритма:

  • сначала добиваются, чтобы в правой части уравнения был нуль, для этого переносят выражение из правой части целого уравнения в левую;
  • затем, полученное выражение в левой части представляют в виде произведения нескольких множителей, что позволяет перейти к совокупности нескольких более простых уравнений.

Приведенный алгоритм решения целого уравнения через разложение на множители требует детального разъяснения на примере.

Пример.

Решите целое уравнение (x 2 −1)·(x 2 −10·x+13)= 2·x·(x 2 −10·x+13) .

Решение.

Сначала как обычно переносим выражение из правой части в левую часть уравнения, не забыв изменить знак, получаем (x 2 −1)·(x 2 −10·x+13)− 2·x·(x 2 −10·x+13)=0 . Здесь достаточно очевидно, что не целесообразно преобразовывать левую часть полученного уравнения в многочлен стандартного вида, так как это даст алгебраическое уравнение четвертой степени вида x 4 −12·x 3 +32·x 2 −16·x−13=0 , решение которого сложно.

С другой стороны, очевидно, что в левой части полученного уравнения можно x 2 −10·x+13 , тем самым представив ее в виде произведения. Имеем (x 2 −10·x+13)·(x 2 −2·x−1)=0 . Полученное уравнение равносильно исходному целому уравнению, и его, в свою очередь, можно заменить совокупностью двух квадратных уравнений x 2 −10·x+13=0 и x 2 −2·x−1=0 . Нахождение их корней по известным формулам корней через дискриминант не составляет труда, корни равны . Они являются искомыми корнями исходного уравнения.

Ответ:

Для решения целых рациональных уравнений также бывает полезен метод введения новой переменной . В некоторых случаях он позволяет переходить к уравнениям, степень которых ниже, чем степень исходного целого уравнения.

Пример.

Найдите действительные корни рационального уравнения (x 2 +3·x+1) 2 +10=−2·(x 2 +3·x−4) .

Решение.

Сведение данного целого рационального уравнения к алгебраическому уравнению является, мягко говоря, не очень хорошей идеей, так как в этом случае мы придем к необходимости решения уравнения четвертой степени, не имеющего рациональных корней. Поэтому, придется поискать другой способ решения.

Здесь несложно заметить, что можно ввести новую переменную y , и заменить ею выражение x 2 +3·x . Такая замена приводит нас к целому уравнению (y+1) 2 +10=−2·(y−4) , которое после переноса выражения −2·(y−4) в левую часть и последующего преобразования образовавшегося там выражения, сводится к квадратному уравнению y 2 +4·y+3=0 . Корни этого уравнения y=−1 и y=−3 легко находятся, например, их можно подобрать, основываясь на теореме, обратной теореме Виета .

Теперь переходим ко второй части метода введения новой переменной, то есть, к проведению обратной замены. Выполнив обратную замену, получаем два уравнения x 2 +3·x=−1 и x 2 +3·x=−3 , которые можно переписать как x 2 +3·x+1=0 и x 2 +3·x+3=0 . По формуле корней квадратного уравнения находим корни первого уравнения . А второе квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен (D=3 2 −4·3=9−12=−3 ).

Ответ:

Вообще, когда мы имеем дело с целыми уравнениями высоких степеней, всегда надо быть готовым к поиску нестандартного метода или искусственного приема для их решения.

Решение дробно рациональных уравнений

Сначала будет полезно разобраться, как решать дробно рациональные уравнения вида , где p(x) и q(x) – целые рациональные выражения. А дальше мы покажем, как свести решение остальных дробно рациональных уравнений к решению уравнений указанного вида.

В основе одного из подходов к решению уравнения лежит следующее утверждение: числовая дробь u/v , где v – отличное от нуля число (иначе мы столкнемся с , которое не определено), равна нулю тогда и только тогда, когда ее числитель равен нулю, то есть, тогда и только тогда, когда u=0 . В силу этого утверждения, решение уравнения сводится к выполнению двух условий p(x)=0 и q(x)≠0 .

Этому заключению соответствует следующий алгоритм решения дробно рационального уравнения . Чтобы решить дробное рациональное уравнение вида , надо

  • решить целое рациональное уравнение p(x)=0 ;
  • и проверить, выполняется ли для каждого найденного корня условие q(x)≠0 , при этом
    • если выполняется, то этот корень является корнем исходного уравнения;
    • если не выполняется, то этот корень – посторонний, то есть, не является корнем исходного уравнения.

Разберем пример применения озвученного алгоритма при решении дробного рационального уравнения.

Пример.

Найдите корни уравнения .

Решение.

Это дробно рациональное уравнение, причем вида , где p(x)=3·x−2 , q(x)=5·x 2 −2=0 .

Согласно алгоритму решения дробно рациональных уравнений этого вида, нам сначала надо решить уравнение 3·x−2=0 . Это линейное уравнение, корнем которого является x=2/3 .

Осталось выполнить проверку для этого корня, то есть проверить, удовлетворяет ли он условию 5·x 2 −2≠0 . Подставляем в выражение 5·x 2 −2 вместо x число 2/3 , получаем . Условие выполнено, поэтому x=2/3 является корнем исходного уравнения.

Ответ:

2/3 .

К решению дробного рационального уравнения можно подходить с немного другой позиции. Это уравнение равносильно целому уравнению p(x)=0 на переменной x исходного уравнения. То есть, можно придерживаться такого алгоритма решения дробно рационального уравнения :

  • решить уравнение p(x)=0 ;
  • найти ОДЗ переменной x ;
  • взять корни, принадлежащие области допустимых значений, - они являются искомыми корнями исходного дробного рационального уравнения.

Для примера решим дробное рациональное уравнение по этому алгоритму.

Пример.

Решите уравнение .

Решение.

Во-первых, решаем квадратное уравнение x 2 −2·x−11=0 . Его корни можно вычислить, используя формулу корней для четного второго коэффициента , имеем D 1 =(−1) 2 −1·(−11)=12 , и .

Во-вторых, находим ОДЗ переменной x для исходного уравнения. Ее составляют все числа, для которых x 2 +3·x≠0 , что то же самое x·(x+3)≠0 , откуда x≠0 , x≠−3 .

Остается проверить, входят ли найденные на первом шаге корни в ОДЗ. Очевидно, да. Следовательно, исходное дробно рациональное уравнение имеет два корня .

Ответ:

Отметим, что такой подход выгоднее первого, если легко находится ОДЗ, и особенно выгоден, если еще при этом корни уравнения p(x)=0 иррациональные, например, , или рациональные, но с довольно большим числителем и/или знаменателем, к примеру, 127/1101 и −31/59 . Это связано с тем, что в таких случаях проверка условия q(x)≠0 потребует значительных вычислительных усилий, и проще исключить посторонние корни по ОДЗ.

В остальных случаях при решении уравнения , особенно когда корни уравнения p(x)=0 целые, выгоднее использовать первый из приведенных алгоритмов. То есть, целесообразно сразу находить корни целого уравнения p(x)=0 , после чего проверять, выполняется ли для них условие q(x)≠0 , а не находить ОДЗ, после чего решать уравнение p(x)=0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Рассмотрим решение двух примеров для иллюстрации оговоренных нюансов.

Пример.

Найдите корни уравнения .

Решение.

Сначала найдем корни целого уравнения (2·x−1)·(x−6)·(x 2 −5·x+14)·(x+1)=0 , составленного с использованием числителя дроби. Левая часть этого уравнения – произведение, а правая – нуль, поэтому, согласно методу решения уравнений через разложение на множители, это уравнение равносильно совокупности четырех уравнений 2·x−1=0 , x−6=0 , x 2 −5·x+14=0 , x+1=0 . Три из этих уравнений линейные и одно – квадратное, их мы умеем решать. Из первого уравнения находим x=1/2 , из второго – x=6 , из третьего – x=7 , x=−2 , из четвертого – x=−1 .

С найденными корнями достаточно легко выполнить их проверку на предмет того, не обращается ли при них в нуль знаменатель дроби, находящейся в левой части исходного уравнения, а определить ОДЗ, напротив, не так просто, так как для этого придется решать алгебраическое уравнение пятой степени. Поэтому, откажемся от нахождения ОДЗ в пользу проверки корней. Для этого по очереди подставляем их вместо переменной x в выражение x 5 −15·x 4 +57·x 3 −13·x 2 +26·x+112 , получающихся после подстановки, и сравниваем их с нулем: (1/2) 5 −15·(1/2) 4 + 57·(1/2) 3 −13·(1/2) 2 +26·(1/2)+112= 1/32−15/16+57/8−13/4+13+112= 122+1/32≠0 ;
6 5 −15·6 4 +57·6 3 −13·6 2 +26·6+112= 448≠0 ;
7 5 −15·7 4 +57·7 3 −13·7 2 +26·7+112=0 ;
(−2) 5 −15·(−2) 4 +57·(−2) 3 −13·(−2) 2 + 26·(−2)+112=−720≠0 ;
(−1) 5 −15·(−1) 4 +57·(−1) 3 −13·(−1) 2 + 26·(−1)+112=0 .

Таким образом, 1/2 , 6 и −2 являются искомыми корнями исходного дробно рационального уравнения, а 7 и −1 – посторонние корни.

Ответ:

1/2 , 6 , −2 .

Пример.

Найдите корни дробного рационального уравнения .

Решение.

Сначала найдем корни уравнения (5·x 2 −7·x−1)·(x−2)=0 . Это уравнение равносильно совокупности двух уравнений: квадратного 5·x 2 −7·x−1=0 и линейного x−2=0 . По формуле корней квадратного уравнения находим два корня , а из второго уравнения имеем x=2 .

Проверять, не обращается ли в нуль знаменатель при найденных значениях x , достаточно неприятно. А определить область допустимых значений переменной x в исходном уравнении достаточно просто. Поэтому, будем действовать через ОДЗ.

В нашем случае ОДЗ переменной x исходного дробно рационального уравнения составляют все числа, кроме тех, для которых выполняется условие x 2 +5·x−14=0 . Корнями этого квадратного уравнения являются x=−7 и x=2 , откуда делаем вывод про ОДЗ: ее составляют все такие x , что .

Остается проверить, принадлежат ли найденные корни и x=2 области допустимых значений. Корни - принадлежат, поэтому, они являются корнями исходного уравнения, а x=2 – не принадлежит, поэтому, это посторонний корень.

Ответ:

Еще полезным будет отдельно остановиться на случаях, когда в дробном рациональном уравнении вида в числителе находится число, то есть, когда p(x) представлено каким-либо числом. При этом

  • если это число отлично от нуля, то уравнение не имеет корней, так как дробь равна нулю тогда и только тогда, когда ее числитель равен нулю;
  • если это число нуль, то корнем уравнения является любое число из ОДЗ.

Пример.

Решение.

Так как в числителе дроби, находящейся в левой части уравнения, отличное от нуля число, то ни при каких x значение этой дроби не может равняться нулю. Следовательно, данное уравнение не имеет корней.

Ответ:

нет корней.

Пример.

Решите уравнение .

Решение.

В числителе дроби, находящейся в левой части данного дробного рационального уравнения, находится нуль, поэтому значение этой дроби равно нулю для любого x , при котором она имеет смысл. Другими словами, решением этого уравнения является любое значение x из ОДЗ этой переменной.

Осталось определить эту область допустимых значений. Она включает все такие значения x , при которых x 4 +5·x 3 ≠0 . Решениями уравнения x 4 +5·x 3 =0 являются 0 и −5 , так как, это уравнение равносильно уравнению x 3 ·(x+5)=0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 =0 и x+5=0 , откуда и видны эти корни. Следовательно, искомой областью допустимых значений являются любые x , кроме x=0 и x=−5 .

Таким образом, дробно рациональное уравнение имеет бесконечно много решений, которыми являются любые числа, кроме нуля и минус пяти.

Ответ:

Наконец, пришло время поговорить о решении дробных рациональных уравнений произвольного вида. Их можно записать как r(x)=s(x) , где r(x) и s(x) – рациональные выражения, причем хотя бы одно из них дробное. Забегая вперед, скажем, что их решение сводится к решению уравнений уже знакомого нам вида .

Известно, что перенос слагаемого из одной части уравнения в другую с противоположным знаком приводит к равносильному уравнению, поэтому уравнению r(x)=s(x) равносильно уравнение r(x)−s(x)=0 .

Также мы знаем, что можно любое , тождественно равную этому выражению. Таким образом, рациональное выражение в левой части уравнения r(x)−s(x)=0 мы всегда можем преобразовать в тождественно равную рациональную дробь вида .

Так мы от исходного дробного рационального уравнения r(x)=s(x) переходим к уравнению , а его решение, как мы выяснили выше, сводится к решению уравнения p(x)=0 .

Но здесь обязательно надо учитывать тот факт, что при замене r(x)−s(x)=0 на , и дальше на p(x)=0 , может произойти расширение области допустимых значений переменной x .

Следовательно, исходное уравнение r(x)=s(x) и уравнение p(x)=0 , к которому мы пришли, могут оказаться неравносильными, и, решив уравнение p(x)=0 , мы можем получить корни, которые будут посторонними корнями исходного уравнения r(x)=s(x) . Выявить и не включать в ответ посторонние корни можно, либо выполнив проверку, либо проверив их принадлежность ОДЗ исходного уравнения.

Обобщим эту информацию в алгоритм решения дробного рационального уравнения r(x)=s(x) . Чтобы решить дробное рациональное уравнение r(x)=s(x) , надо

  • Получить справа нуль с помощью переноса выражения из правой части с противоположным знаком.
  • Выполнить действия с дробями и многочленами в левой части уравнения, тем самым преобразовав ее в рациональную дробь вида .
  • Решить уравнение p(x)=0 .
  • Выявить и исключить посторонние корни, что делается посредством их подстановки в исходное уравнение или посредством проверки их принадлежности ОДЗ исходного уравнения.

Для большей наглядности покажем всю цепочку решения дробных рациональных уравнений:
.

Давайте рассмотрим решения нескольких примеров с подробным пояснением хода решения, чтобы прояснить приведенный блок информации.

Пример.

Решите дробное рациональное уравнение .

Решение.

Будем действовать в соответствии с только что полученным алгоритмом решения. И сначала перенесем слагаемые из правой части уравнения в левую, в результате переходим к уравнению .

На втором шаге нам нужно преобразовать дробное рациональное выражение в левой части полученного уравнения к виду дроби . Для этого выполняем приведение рациональных дробей к общему знаменателю и упрощаем полученное выражение: . Так мы приходим к уравнению .

На следующем этапе нам нужно решить уравнение −2·x−1=0 . Находим x=−1/2 .

Остается проверить, не является ли найденное число −1/2 посторонним корнем исходного уравнения. Для этого можно сделать проверку или найти ОДЗ переменной x исходного уравнения. Продемонстрируем оба подхода.

Начнем с проверки. Подставляем в исходное уравнение вместо переменной x число −1/2 , получаем , что то же самое, −1=−1 . Подстановка дает верное числовое равенство, поэтому, x=−1/2 является корнем исходного уравнения.

Теперь покажем, как последний пункт алгоритма выполняется через ОДЗ. Областью допустимых значений исходного уравнения является множество всех чисел, кроме −1 и 0 (при x=−1 и x=0 обращаются в нуль знаменатели дробей). Найденный на предыдущем шаге корень x=−1/2 принадлежит ОДЗ, следовательно, x=−1/2 является корнем исходного уравнения.

Ответ:

−1/2 .

Рассмотрим еще пример.

Пример.

Найдите корни уравнения .

Решение.

Нам требуется решить дробно рациональное уравнение, пройдем все шаги алгоритма.

Во-первых, переносим слагаемое из правой части в левую, получаем .

Во-вторых, преобразуем выражение, образовавшееся в левой части: . В результате приходим к уравнению x=0 .

Его корень очевиден – это нуль.

На четвертом шаге остается выяснить, не является ли найденный корень посторонним для исходного дробно рационального уравнения. При его подстановке в исходное уравнение получается выражение . Очевидно, оно не имеет смысла, так как содержит деление на нуль. Откуда заключаем, что 0 является посторонним корнем. Следовательно, исходное уравнение не имеет корней.

7 , что приводит к уравнению . Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно из правой части, то есть, . Теперь вычитаем из обеих частей тройки: . По аналогии , откуда , и дальше .

Проверка показывает, что оба найденных корня являются корнями исходного дробного рационального уравнения.

Ответ:

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.

\(\bullet\) Рациональное уравнение - это уравнение, представимое в виде \[\dfrac{P(x)}{Q(x)}=0\] где \(P(x), \ Q(x)\) - многочлены (сумма “иксов” в различных степенях, умноженных на различные числа).
Выражение в левой части уравнения называется рациональным выражением.
ОДЗ (область допустимых значений) рационального уравнения – это все значения \(x\) , при которых знаменатель НЕ обращается в нуль, то есть \(Q(x)\ne 0\) .
\(\bullet\) Например, уравнения \[\dfrac{x+2}{x-3}=0,\qquad \dfrac 2{x^2-1}=3, \qquad x^5-3x=2\] являются рациональными уравнениями.
В первом уравнении ОДЗ – это все \(x\) , такие что \(x\ne 3\) (пишут \(x\in (-\infty;3)\cup(3;+\infty)\) ); во втором уравнении – это все \(x\) , такие что \(x\ne -1; x\ne 1\) (пишут \(x\in (-\infty;-1)\cup(-1;1)\cup(1;+\infty)\) ); а в третьем уравнении никаких ограничений на ОДЗ нет, то есть ОДЗ – это все \(x\) (пишут \(x\in\mathbb{R}\) ). \(\bullet\) Теоремы:
1) Произведение двух множителей равно нулю тогда и только тогда, когда один из них равен нулю, а другой при этом не теряет смысла, следовательно, уравнение \(f(x)\cdot g(x)=0\) равносильно системе \[\begin{cases} \left[ \begin{gathered}\begin{aligned} &f(x)=0\\ &g(x)=0 \end{aligned} \end{gathered} \right.\\ \text{ОДЗ уравнения} \end{cases}\] 2) Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель не равен нулю, следовательно, уравнение \(\dfrac{f(x)}{g(x)}=0\) равносильно системе уравнений \[\begin{cases} f(x)=0\\ g(x)\ne 0 \end{cases}\] \(\bullet\) Рассмотрим несколько примеров.

1) Решите уравнение \(x+1=\dfrac 2x\) . Найдем ОДЗ данного уравнения – это \(x\ne 0\) (так как \(x\) находится в знаменателе).
Значит, ОДЗ можно записать так: .
Перенесем все слагаемые в одну часть и приведем к общему знаменателю: \[\dfrac{(x+1)\cdot x}x-\dfrac 2x=0\quad\Leftrightarrow\quad \dfrac{x^2+x-2}x=0\quad\Leftrightarrow\quad \begin{cases} x^2+x-2=0\\x\ne 0\end{cases}\] Решением первого уравнения системы будут \(x=-2, x=1\) . Видим, что оба корня ненулевые. Следовательно, ответ: \(x\in \{-2;1\}\) .

2) Решите уравнение \(\left(\dfrac4x - 2\right)\cdot (x^2-x)=0\) . Найдем ОДЗ данного уравнения. Видим, что единственное значение \(x\) , при котором левая часть не имеет смысла – это \(x=0\) . Значит, ОДЗ можно записать так: \(x\in (-\infty;0)\cup(0;+\infty)\) .
Таким образом, данное уравнение равносильно системе:

\[\begin{cases} \left[ \begin{gathered}\begin{aligned} &\dfrac 4x-2=0\\ &x^2-x=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered}\begin{aligned} &\dfrac 4x=2\\ &x(x-1)=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered}\begin{aligned} &x=2\\ &x=1\\ &x=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \left[ \begin{gathered}\begin{aligned} &x=2\\ &x=1 \end{aligned} \end{gathered} \right.\] Действительно, несмотря на то, что \(x=0\) - корень второго множителя, если подставить \(x=0\) в изначальное уравнение, то оно не будет иметь смысла, т.к. не определено выражение \(\dfrac 40\) .
Таким образом, решением данного уравнения являются \(x\in \{1;2\}\) .

3) Решите уравнение \[\dfrac{x^2+4x}{4x^2-1}=\dfrac{3-x-x^2}{4x^2-1}\] В нашем уравнении \(4x^2-1\ne 0\) , откуда \((2x-1)(2x+1)\ne 0\) , то есть \(x\ne -\frac12; \frac12\) .
Перенесем все слагаемые в левую часть и приведем к общему знаменателю:

\(\dfrac{x^2+4x}{4x^2-1}=\dfrac{3-x-x^2}{4x^2-1} \quad \Leftrightarrow \quad \dfrac{x^2+4x-3+x+x^2}{4x^2-1}=0\quad \Leftrightarrow \quad \dfrac{2x^2+5x-3}{4x^2-1}=0 \quad \Leftrightarrow\)

\(\Leftrightarrow \quad \begin{cases} 2x^2+5x-3=0\\ 4x^2-1\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} (2x-1)(x+3)=0\\ (2x-1)(2x+1)\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered} \begin{aligned} &x=\dfrac12\\ &x=-3 \end{aligned}\end{gathered} \right.\\ x\ne \dfrac 12\\ x\ne -\dfrac 12 \end{cases} \quad \Leftrightarrow \quad x=-3\)

Ответ: \(x\in \{-3\}\) .

Замечание. Если ответ состоит из конечного набора чисел, то их можно записывать через точку с запятой в фигурных скобках, как показано в предыдущих примерах.

Задачи, в которых требуется решить рациональные уравнения, в ЕГЭ по математике встречаются каждый год, поэтому при подготовке к прохождению аттестационного испытания выпускникам непременно стоит самостоятельно повторить теорию по данной теме. Уметь справляться с такими заданиями обязательно должны выпускники, сдающие как базовый, так и профильный уровень экзамена. Усвоив теорию и разобравшись с практическими упражнениями по теме «Рациональные уравнения», учащиеся смогут решать задачи с любым количеством действий и рассчитывать на получение конкурентных баллов по итогам сдачи ЕГЭ.

Как подготовиться к экзамену вместе с образовательным порталом «Школково»?

Иногда найти источник, в котором полноценно представлена базовая теория для решения математических задач, оказывается достаточно сложно. Учебника может просто не оказаться под рукой. А найти необходимые формулы иногда бывает достаточно сложно даже в Интернете.

Образовательный портал «Школково» избавит вас от необходимости поиска нужного материала и поможет качественного подготовиться к прохождению аттестационного испытания.

Всю необходимую теорию по теме «Рациональные уравнения» наши специалисты подготовили и изложили в максимально доступной форме. Изучив представленную информацию, учащиеся смогут восполнить пробелы в знаниях.

Для успешной подготовки к ЕГЭ выпускникам необходимо не только освежить в памяти базовый теоретический материал по теме «Рациональные уравнения», но попрактиковаться в выполнении заданий на конкретных примерах. Большая подборка задач представлена в разделе «Каталог».

Для каждого упражнения на сайте наши специалисты прописали алгоритм решения и указали правильный ответ. Учащиеся могут практиковаться в решении задач различной степени сложности в зависимости от уровня подготовки. Перечень заданий в соответствующем разделе постоянно дополняется и обновляется.

Изучить теоретический материал и отточить навыки решения задач по теме «Рациональные уравнения», подобных тем, которые включены в тесты ЕГЭ, можно в режиме онлайн. В случае необходимости любое из представленных заданий можно добавить в раздел «Избранное». Еще раз повторив базовую теорию по теме «Рациональные уравнения», старшеклассник сможет в дальнейшем вернуться к задаче, чтобы обсудить ход ее решения с преподавателем на уроке алгебры.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Класс 9.

Тема урока: «Дробные рациональные уравнения»

Тип урока: комбинированный.

Цели:

1. Образовательные: дать определение «дробно-рациональные уравнения», показать способы решения таких уравнений.

2. Развивающие: развитие умений и навыков решать примеры с данным типом уравнений, находить корни дробно-рациональных уравнений.

3. Воспитывающие: воспитывать внимание, внимательность, активность, аккуратность; уважительное отношение к матери.

Задачи: заинтересовать учеников предметом, показать важность умения решать разные уравнения и задачи.

Материально- техническое оснащение:

Мультимедиа проектор, экран, презентация к уроку «Дробные рациональные уравнения»

Время: 45 минут

План урока.

Этапы урока

Деятельность учителя

Деятельность ученика

I . Организационный момент. (1 мин.)

Приветствует учащихся, проверка их готовность к уроку.

Приветствуют учителя.

II . Сообщение темы и целей урока. (2 мин)

Сообщает тему и цель урока.

Записывают тему в тетрадь.

III . Повторение пройденной темы. (2 мин)

Задает вопросы на повторение пройденной темы.

Отвечают на вопросы.

IV . Изучение нового материала. (15 мин.)

Демонстрирует слайды, сопровождает рассказом.

Слушает, задает целенаправленные вопросы в роли рядового участника

Обсуждают предмет с учителем и получают при необходимости информацию, устанавливают цели, планируют траекторию работы.

Вырабатывают план действий, формируют задачи.

Выполняют поиск информации, сбор данных и фактов истории, первично исследуют полученную информацию, решают промежуточные задачи.

V . Физкультминутка. (1 мин.)

Выполняет физкультминутку

Выполняют физкультминутку

VI . Закрепление материала. (20 мин.)

Решение задач, предлагает вопросы на закрепление.

Решают задачи в тетрадях, у доски, задают вопросы учителю.

VIII . Подведение итогов урока.(4мин)

Оценивает работу учащихся.

Говорят о том, чему научились на уроке. Убирают рабочие места.

ХОД УРОКА

I. Рефлексия начала урока (музыка; презентация о матери).

Проверка готовности к уроку.

II. Сообщение новой темы, цели и задачи :

Учитель: Здравствуйте! Посмотрите, пожалуйста, друг на друга и от всей души улыбнитесь.

Сегодняшний урок я бы хотела начать со слов М. Горького:

Слайд 1
Без солнца не цветут цветы,

без любви нет счастья,

без женщин нет любви,

без матери нет ни поэта, ни героя.

Вся гордость мира – от матерей.
(М. Горький)

Учитель:

– Что может быть на свете священнее имени матери! …

Человек, еще не сделавший ни одного шага по земле и только – только начинающий «лопотать», неуверенно и старательно складывает по слогам «мама» и, почувствовав свою удачу, смеется, счастливый …

Когда ребенок вскрикнет первый раз

И мать его коснется осторожно,

Ее любовь… О, как она тревожна.

Тревожна каждый день и час.

Ребята, скоро День Матери, поэтому сегодняшний урок я хочу связать с этой темой. Мы с вами на прошлых уроках научились решать, находить корни различных уравнений, сегодня мы продолжим знакомиться с одним из видов уравнений – это дробные рациональные уравнения, выясним важность уравнений, и вспомним, как решать задачи с помощью уравнений. Постараемся не подвести свою маму, решать будем внимательно и не отвлекаясь, готовиться к ГИА. Мать каждого из вас хочет, чтобы её ребёнок был самым лучшим. Итак, сегодня у нас урок изучения новой темы (слайд 2).

III. Повторение пройденной темы.

1. Проверка домашнего задания (слайд 3).

№925(а, б), №935(а, б), №936.

2. Устно повторяем (слайд 3 ,4,5,6 ).

Повторим:

Как называется данное уравнение? Сколько корней имеет данное уравнение?

IV . Изучение нового материала. (слайд 7).

Учитель: Уравнение y (x ) =0 называют дробным рациональным уравнением, если выражение y (x ) является дробным (т.е. содержит деление на выражение с переменными).

Для решения рационального уравнения его необходимо преобразовать в линейное или квадратное уравнение, решить это уравнение и отбросить те корни, которые не входят в ОДЗ (область допустимых значений) исходного рационального уравнения.

Откройте учебник на стр.78 и прочитаем правило. С этой темой вы уже работали в 8 классе.

Алгоритм решения дробных рациональных уравнений: ( слайд 8).

    (приложение 1)

Учитель: А теперь вместе со мной давайте решим дробно-рациональное уравнение по алгоритму (слайд 9).

VI . Самостоятельная работа (слайд 10).

Твое письмо. Твои родные строки.

Последний материнский твой наказ:

«Законы жизни мудры и жестоки.

Живи. Трудись. Не порть слезами глаз.

Моя любовь с тобой всегда. Навеки.

Ты жизнь люби. Она ведь хороша.

Людей люби. И помни – в человеке

что главное? Высокая душа».

Давайте и мы с вами постараемся, чтобы у нас была «высокая душа». А для этого надо уважать и любить родителей, конечно, стараться учиться и хорошо сдать гос. экзамены. Займёмся подготовкой к аттестации.

Самостоятельная работа. Самоконтроль – 4 варианта. Проверка вашей честности. Работа выполняется в тетрадях. В ходе выполнения работы учащиеся определяют для себя алгоритм решения дробных рациональных уравнений. На каждой парте – таблица – напоминание «Алгоритм решения дробных рациональных уравнений». Приложение 1.

В а р и а н т 1.

В а р и а н т 2.

В а р и а н т 3.

В а р и а н т 4.

О т в е т ы:

I вариант:
,
(
;
).

II вариант:
(
;
)

III вариант:
(

)

IV вариант:
,
(
;
).

VII . Физкультминутка (слайд 11).

Учитель: А теперь разминка.

Повернитесь ко мне. Я проговариваю предложения. Если оно справедливо – вы встаёте, если нет – то остаётесь сидеть.

1) 5х = 7 имеет единственный корень.

2) 0х = 0 не имеет корней.
3) Если Д 0, то квадратное уравнение имеет два корня.
4) Если Д
5) Количество корней не больше степени уравнения.

VIII . Закрепление и повторение материала. (слайд 12).

Учитель. Мужчины перед своими любимыми хотят выглядеть только мужественными, только сильными, только несгибаемыми. Возможно, это и делает их мужчинами. И только перед родной матерью не боятся они обнажить свои слабости и неудачи, признаться в ошибках и потерях, потому что, как бы далеко они не ушли в своем возрасте и развитии, перед нею они и седые – все равно дети. А уж она понимает сердцем, что бедному да обиженному, прежде всего, всех нужнее – мать. Сегодня у всех будут хорошие оценки, поэтому обиженных, я думаю, не будет.

    Решаем задачу № 942 из учебника. (Алгебра – 9 класс/ Ю.Н. Макарычев) (слайд 13).

1-я автомашина

x -20 км/ч

ч

2-я автомашина

x км/ч

ч

    Решить пример на доске. (слайд 14).

№289(а)

VII . Подведение итогов урока .

Что нового вы узнали на уроке?

    Чему вы научились на уроке?

2. Алгоритм решения дробных рациональных уравнений:

Учитель оценивает работу учащихся и выставляет оценки.

Учитель. Приобретая черты символа и выполняя огромную общественную миссию, мать никогда не теряла привычные человеческие черты, оставаясь радушной хозяйкой и умной собеседницей, старательной работницей и прирожденной песенницей, широкой в застолье и мужественной в горе, открытой в радости и сдержанной в печали, и всегда доброй, понимающей и женственной! Я очень хочу, чтобы мечты ваших родителей осуществились, пусть вы будете достойными людьми (слайд 15).

VIII . Домашнее задание . №943, №940(а, б), №290 (слайд 16).

Приложение 1.

Алгоритм решения дробных рациональных уравнений:

    Найти допустимые значения дробей, входящих в уравнение.

    Найти общий знаменатель дробей, входящих в уравнение.

    Умножить обе части уравнения на общий знаменатель.

    Решить получившееся уравнение.

    Исключить корни, не входящие в допустимые значения дробей уравнения.