Коррозия металла — причины возникновения и методы защиты. Что такое химическая коррозия и как ее устранить

Химическая коррозия - это вид коррозионного разрушения металла, связанный с взаимодействием металла и коррозионной среды, при котором одновременно окисляется металл и происходит восстановление коррозионной среды. Химическая не связана с образованием, а также воздействием электрического тока.

Движущей силой (первопричиной) химической коррозии является термодинамическая неустойчивость металлов. Они могут самопроизвольно переходить в более устойчивое состояние в результате процесса:

Металл + Окислительный компонент среды = Продукт реакции

При этом термодинамический потенциал системы уменьшается.

По знаку изменения термодинамического потенциала можно определить возможность самопроизвольного протекания химической коррозии. Критерием обычно служит изобарно-изотермический потенциал G. При самопроизвольном протекании химического процесса наблюдается убыль изобарно-изотермического потенциала. Поэтому, если:

Δ G Т < 0, то процесс химической коррозии возможен;

Δ G Т > 0, то процесс химической коррозии невозможен;

Δ G Т = 0, то система находится в равновесии.

К химической коррозии относятся :

Газовая коррозия - коррозионное разрушение под воздействием газов при высоких температурах;

Коррозия в жидкостях-неэлектролитах.

Газовая коррозия

Газовая коррозия - наиболее распространенный вид химической коррозии. При высоких температурах поверхность металла под воздействием газов разрушается. Это явление наблюдается в основном в металлургии (оборудование для горячей прокатки, ковки, штамповки, детали двигателей внутреннего сгорания и др.)

Самый распространенный случай химической коррозии – взаимодействие металла с кислородом. Процесс протекает по реакции:

Ме + 1/2О 2 - МеО

Направление этой реакции (окисления) определяется парциальным давлением кислорода в смеси газов (pО2) и давлением диссоциации паров оксида при определенной температуре (рМеО).

Эта химическая реакция может протекать тремя путями:

1) pО 2 = рМеО, реакция равновесная;

2) pО 2 > рМеО, реакция сдвинута в сторону образования оксида;

3) pО 2 < рМеО, оксид диссоциирует на чистый металл и оксид, реакция протекает в обратном направлении.

Зная парциальное давление кислорода газовой смеси и давление диссоциации оксида можно определить интервал температур, при которых термодинамически возможно протекание данной реакции.

Скорость протекания газовой коррозии определяется несколькими факторами: температуры окружающей среды, природы металла или состава сплава, характера газовой среды, времени контакта с газовой средой, от свойств продуктов коррозии.

Процесс химической коррозии во многом зависит от характера и свойств образовавшейся на поверхности оксидной пленки.

Процесс появления на поверхности оксидной пленки можно условно разделить на две стадии:

На поверхности металла, которая непосредственно контактирует с атмосферой, адсорбируются молекулы кислорода;

Металл взаимодействует с газом с образованием химического соединения.

На первой стадии между поверхностными атомами и кислородом возникает ионная связь: атом кислорода забирает у металла два электрона. При этом возникает очень сильная связь, намного сильнее, чем связь кислорода с металлом в окисле. Возможно это явление наблюдается из-за действия на кислород поля, создаваемого атомами металла. После полного насыщения поверхности окислителем, что происходит почти мгновенно, при низких температурах за счет ванн-дер-вальсовых сил может наблюдаться и физическая адсорбция молекул окислителя.

В результате образуется очень тонкая мономолекулярная защитная пленка, которая со временем утолщается, затрудняя подход кислорода.

На второй стадии, из-за химического взаимодействия, окислительный компонент среды отнимает у металла валентные электроны и с ним же реагирует, образуя продукт коррозии.

Если образовавшаяся оксидная пленка будет обладать хорошими защитными свойствами - она будет тормозить дальнейшее развитие процесса химической коррозии. Кроме того, оксидная пленка очень сильно влияет на жаростойкость металла.

Существует три вида пленок, которые могут образоваться:

Тонкие (невидимые невооруженным глазом);

Средние (дают цвета побежалости);

Толстые (хорошо видны).

Чтобы оксидная пленка была защитной, она должна отвечать некоторым требованиям: не иметь пор, быть сплошной, хорошо сцепляться с поверхностью, быть химически инертной по отношении к окружающей ее среде, иметь высокую твердость, быть износостойкой.

Если пленка рыхлая и пористая, кроме того имеет еще плохое сцепление с поверхностью - она не будет обладать защитными свойствами.

Существует условие сплошности, которое формулируется так: молекулярный объем оксидной пленки должен быть больше атомного объема металла .

Сплошность - способность окисла покрывать сплошным слоем всю поверхность металла.

Если это условие соблюдается, то пленка сплошная и, соответственно, защитная.

Но есть металлы, для которых условие сплошности не является показателем. К ним относятся все щелочные, щелочно-земельные (кроме бериллия), даже магний, который важен в техническом плане.

Для определения толщины образовавшейся на поверхности оксидной пленки, изучения ее защитных свойств применяют множество методов. Защитную способность пленки могут определять во время ее формирования, по скорости окисления металла и характеру изменения скорости во времени. Если окисел уже сформировался, целесообразно исследовать толщину и защитные его свойства, нанося на поверхность какой-нибудь подходящий для этого случая реагент (например раствор Cu(NO3)2, который применяется для железа). По времени проникновения реагента к поверхности можно определить толщину пленки.

Даже уже образовавшаяся сплошная пленка не прекращает своего взаимодействия с металлом и окислительной средой.

Влияние внешних и внутренних факторов на скорость протекания химической коррозии.

На скорость химической коррозии очень сильное влияние оказывает температура. При ее повышении процессы окисления идут намного быстрее. При этом уменьшение термодинамической возможности протекания реакции не имеет никакого значения.

Особенно сильно влияет переменный нагрев и охлаждение. В защитной пленке вследствие появления термических напряжений образуются трещины. Сквозь трещины окислительный компонент среды имеет непосредственный доступ к поверхности. Формируется новая оксидная пленка, а старая - постепенно отслаивается.

Большую роль в процессе коррозии играет состав газовой среды. Но это индивидуально для каждого металла и изменяется с колебаниям температур. Например, медь очень быстро корродирует в атмосфере кислорода, но устойчива в среде, содержащей SO 2 . Никель же наоборот, интенсивно корродирует при контакте с атмосферой SO 2 , но устойчив в средах O 2 , CO 2 и H 2 O. Хром относительно устойчив во всех четырех средах.

Если давление диссоциации окисла выше давления окисляющего компонента - окисление металла прекращается, он становится термодинамически устойчивым.

Скорость окисления зависит от состава сплава. Возьмем, к примеру, железо. Добавки серы, марганца, фосфора и никеля не влияют на его окисление. Кремний, хром, алюминий - замедляют процесс. А бериллий, кобальт, титан и медь очень сильно тормозят окисление. При высоких температурах интенсифицировать процесс могут вольфрам, молибден, а также ванадий. Это объясняется летучестью или легкоплавкостью их окислов.

Наблюдая за скоростью окисления железа при различных температурах, отметим что с увеличением температуры самое медленное окисление наблюдается при аустенитной структуре. Она является наиболее жаростойкой, по сравнению с другими.

На скорость протекания химической коррозии влияет и характер обработки поверхности. Если поверхность гладкая, то она окисляется немного медленнее, чем бугристая поверхность с дефектами.

Химическая коррозия в жидкостях-неэлектролитах

Жидкости-неэлектролиты - это жидкие среды, которые не являются проводниками электричества. К ним относятся: органические (бензол, фенол, хлороформ, спирты, керосин, нефть, бензин); неорганического происхождения (жидкий бром, расплавленная сера и т.д.). Чистые неэлектролиты не реагируют с металлами, но с добавлением даже незначительного количества примесей процесс взаимодействия резко ускоряется. Например, если нефть будет содержать серу или серосодержащие соединения (сероводород, меркаптаны) процесс химической коррозии ускоряется. Если вдобавок увеличится температура, в жидкости окажется растворенный кислород - химическая коррозия усилится.

Присутствие в жидкостях-неэлектролитах влаги обеспечивает интенсивное протекание коррозии уже по электрохимическому механизму.

Химическая коррозия в жидкостях-неэлектролитах подразделяется на несколько стадий:

Подход окислителя к поверхности металла;

Хемосорбция реагента на поверхности;

Реакция окислителя с металлом (образование оксидной пленки);

Десорбция оксидов с металлом (может отсутствовать);

Диффузия оксидов в неэлектролит (может отсутствовать).

Для защиты конструкций от химической коррозии в жидкостях-неэлектролитах на ее поверхность наносят покрытия, устойчивые в данной среде.

Словосочетания «коррозия металла» заключает в себе намного больше, чем название популярной рок-группы. Коррозия безвозвратно разрушает металл , превращая его в труху: из всего, произведенного в мире железа, 10% полностью разрушится в этот же год. Ситуация с российским металлом выглядит примерно так — весь металл, выплавленный за год в каждой шестой доменной печи нашей страны, становится ржавой трухой еще до конца года.

Выражение «обходится в копеечку» в отношении коррозии металла более чем верно — ежегодный ущерб, приносимый коррозией, составляет не менее 4% годового дохода любой развитой страны, а в России сумма ущерба исчисляется десятизначной цифрой. Так что же вызывает коррозийные процессы металлов и как с ними бороться?

Что такое коррозия металлов

Разрушение металлов в результате электрохимического (растворение во влагосодержащей воздушной или водной среде — электролите) или химического (образование соединений металлов с химическими агентами высокой агрессии) взаимодействия с внешней средой. Коррозийный процесс в металлах может развиться лишь в некоторых участках поверхности (местная коррозия), охватить всю поверхность (равномерная коррозия), или же разрушать металл по границам зерен (межкристаллитная коррозия).

Металл под воздействием кислорода и воды становится рыхлым светло-коричневым порошком, больше известным как ржавчина (Fе 2 O 3 ·H 2 О).

Химическая коррозия

Этот процесс происходит в средах, не являющихся проводниками электрического тока (сухие газы, органические жидкости — нефтепродукты, спирты и др.), причем интенсивность коррозии возрастает с повышением температуры — в результате на поверхности металлов образуется оксидная пленка.

Химической коррозии подвержены абсолютно все металлы — и черные, и цветные. Активные цветные металлы (например — алюминий) под воздействием коррозии покрываются оксидной пленкой, препятствующей глубокому окислению и защищающей металл. А такой мало активный металл, как медь, под воздействием влаги воздуха приобретает зеленоватый налет — патину. Причем оксидная пленка защищает металл от коррозии не во всех случаях — только если кристаллохимическая структура образовавшейся пленки сообразна строению металла, в противном случае — пленка ничем не поможет.

Сплавы подвержены другому типу коррозии: некоторые элементы сплавов не окисляются, а восстанавливаются (например, в сочетании высокой температуры и давления в сталях происходит восстановление водородом карбидов), при этом сплавы полностью утрачивают необходимые характеристики.

Электрохимическая коррозия

Процесс электрохимической коррозии не нуждается в обязательном погружении металла в электролит — достаточно тонкой электролитической пленки на его поверхности (часто электролитические растворы пропитывают среду, окружающую металл (бетон, почву и т.д.)). Наиболее распространенной причиной электрохимической коррозии является повсеместное применение бытовой и технической солей (хлориды натрия и калия) для устранения льда и снега на дорогах в зимний период — особенно страдают автомашины и подземные коммуникации (по статистике, ежегодные потери в США от использования солей в зимний период составляют 2,5 млрд. долларов).

Происходит следующее: металлы (сплавы) утрачивают часть атомов (они переходят в электролитический раствор в виде ионов), электроны, замещающие утраченные атомы, заряжают металл отрицательным зарядом, в то время как электролит имеет положительный заряд. Образуется гальваническая пара: металл разрушается, постепенно все его частицы становятся частью раствора. Электрохимическую коррозию могут вызывать блуждающие токи, возникающие при утечке из электрической цепи части тока в водные растворы или в почву и оттуда — в конструкции из металла. В тех местах, где блуждающие токи выходят из металлоконструкций обратно в воду или в почву, происходит разрушение металлов. Особенно часто блуждающие токи возникают в местах движения наземного электротранспорта (например, трамваев и ж/д локомотивов на электрической тяге). Всего за год блуждающие токи силой в 1А способны растворить железа — 9,1 кг, цинка — 10,7 кг, свинца — 33,4 кг.

Другие причины коррозии металла

Развитию коррозийных процессов способствуют радиация, продукты жизнедеятельности микроорганизмов и бактерий. Коррозия, вызываемая морскими микроорганизмами, наносит ущерб днищам морских судов, а коррозийные процессы, вызванные бактериями, даже имеют собственное название — биокоррозия.

Совокупность воздействия механических напряжений и внешней среды многократно ускоряет коррозию металлов — снижается их термоустойчивость, повреждаются поверхностные оксидные пленки, а в тех местах, где появляются неоднородности и трещины, активируется электрохимическая коррозия.

Меры защиты металлов от коррозии

Неизбежными последствиями технического прогресса является загрязнение нашей среды обитания — процесс, ускоряющий коррозию металлов, поскольку внешняя окружающая среда проявляет к ним все большую агрессию. Каких-либо способов полностью исключить коррозийное разрушение металлов не существует, все, что можно сделать, это максимально замедлить этот процесс.

Для минимизации разрушения металлов можно сделать следующее: снизить агрессию среды, окружающей металлическое изделие; повысить устойчивость металла к коррозии; исключить взаимодействие между металлом и веществами из внешней среды, проявляющими агрессию.

Человечеством за тысячи лет испробованы многие способы защиты металлических изделий от химической коррозии, некоторые из них применяются по сей день: покрытие жиром или маслом, другими металлами, коррозирующими в меньшей степени (самый древний метод, которому уже более 2 тыс. лет — лужение (покрытие оловом)).

Антикоррозийная защита неметаллическими покрытиями

Неметаллические покрытия — краски (алкидные, масляные и эмали), лаки (синтетические, битумные и дегтевые) и полимеры образуют защитную пленку на поверхности металлов, исключающую (при своей целостности) контакт с внешней средой и влагой.

Применение красок и лаков выгодно тем, что наносить эти защитные покрытия можно непосредственно на монтажной и строительной площадке. Методы нанесения лакокрасочных материалов просты и поддаются механизации, восстановить поврежденные покрытия можно «на месте» — во время эксплуатации, эти материалы имеют сравнительно низкую стоимость и их расход на единицу площади невелик. Однако их эффективность зависит от соблюдения нескольких условий: соответствие климатическим условиям, в которых будет эксплуатироваться металлическая конструкция; необходимость применения исключительно качественных лакокрасочных материалов ; неукоснительное следование технологии нанесения на металлические поверхности. Лакокрасочные материалы лучше всего наносить несколькими слоями — их количество обеспечит лучшую защиту от атмосферного воздействия на металлическую поверхность.

В роли защитных покрытий от коррозии могут выступать полимеры — эпоксидные смолы и полистирол, поливинилхлорид и полиэтилен. В строительных работах закладные детали из железобетона покрываются обмазками из смеси цемента и перхлорвинила, цемента и полистирола.

Защита железа от коррозии покрытиями из других металлов

Существует два типа металлических покрытий-ингибиторов — протекторные (покрытия цинком, алюминием и кадмием) и коррозионностойкие (покрытия серебром, медью, никелем, хромом и свинцом). Ингибиторы наносятся химическим способом: первая группа металлов имеет большую электроотрицательность по отношению к железу, вторая — большую электроположительность. Наибольшее распространение в нашем обиходе получили металлические покрытия железа оловом (белая жесть, из нее производят консервные банки) и цинком (оцинкованное железо — кровельное покрытие), получаемые путем протягивания листового железа через расплав одного из этих металлов.

Часто цинкованию подвергаются чугунная и стальная арматура, а также водопроводные трубы — эта операция существенно повышает их стойкость к коррозии, но только в холодной воде (при проводе горячей воды оцинкованные трубы изнашиваются быстрее неоцинкованных). Несмотря на эффективность цинкования, оно не дает идеальной защиты — цинковое покрытие часто содержит трещины, для устранения которых требуется предварительное никелерование металлических поверхностей (покрытие никелем). Цинковые покрытия не позволяют наносить на них лакокрасочные материалы — нет устойчивого покрытия.

Лучшее решение для антикоррозийной защиты — алюминиевое покрытие. Этот металл имеет меньший удельный вес, а значит — меньше расходуется, алюминированные поверхности можно окрашивать и слой лакокрасочного покрытия будет устойчив. Кроме того, алюминиевое покрытие по сравнению с оцинкованным покрытием обладает большей стойкостью в агрессивных средах. Алюминирование слабо распространено из-за сложности нанесения этого покрытия на металлический лист — алюминий в расплавленном состоянии проявляет высокую агрессию к другим металлам (по этой причине расплав алюминия нельзя содержать в стальной ванне). Возможно, эта проблема будет полностью решена в самое ближайшее время — оригинальный способ выполнения алюминирования найден российскими учеными. Суть разработки заключается в том, чтобы не погружать стальной лист в расплав алюминия, а поднять жидкий алюминий к стальному листу.

Повышение коррозийной стойкости путем добавления в стальные сплавы легирующих добавок

Введение в стальной сплав хрома, титана, марганца, никеля и меди позволяет получить легированную сталь с высокими антикоррозийными свойствами. Особенную стойкость стальному сплаву придает большая доля хрома, благодаря которому на поверхности конструкций образуется оксидная пленка большой плотности. Введение в состав низколегированных и углеродистых сталей меди (от 0,2% до 0,5%) позволяет повысить их коррозийную устойчивость в 1,5-2 раза. Легирующие добавки вводятся в состав стали с соблюдением правила Таммана: высокая коррозийная устойчивость достигается, когда на восемь атомов железа приходится один атом легирующего металла.

Меры противодействия электрохимической коррозии

Для ее снижения необходимо понизить коррозийную активность среды посредством введения неметаллических ингибиторов и уменьшить количество компонентов, способных начать электрохимическую реакцию. Таким способом будет понижение кислотности почв и водных растворов, контактирующих с металлами. Для снижения коррозии железа (его сплавов), а также латуни, меди, свинца и цинка из водных растворов необходимо удалить диоксид углерода и кислород. В электроэнергетической отрасли проводится удаление из воды хлоридов, способных повлиять на локальную коррозию. С помощью известкования почвы можно снизить ее кислотность.

Защита от блуждающих токов

Снизить электрокоррозию подземных коммуникаций и заглубленных металлоконструкций возможно при соблюдении нескольких правил:

  • участок конструкции, служащий источником блуждающего тока, необходимо соединить металлическим проводником с рельсом трамвайной дороги;
  • трассы теплосетей должны размещаться на максимальном удалении от рельсовых дорог, по которым передвигается электротранспорт, свести к минимуму число их пересечений;
  • применение электроизоляционных трубных опор для повышения переходного сопротивления между грунтом и трубопроводами;
  • на вводах к объектам (потенциальным источникам блуждающих токов) необходима установка изолирующих фланцев;
  • на фланцевой арматуре и сальниковых компенсаторах устанавливать токопроводящие продольные перемычки — для наращивания продольной электропроводимости на защищаемом отрезке трубопроводов;
  • чтобы выровнять потенциалы трубопроводов, расположенных параллельно, необходимо установить поперечные электроперемычки на смежных участках.

Защита металлических объектов, снабженных изоляцией, а также стальных конструкций небольшого размера выполняется с помощью протектора, выполняющего функцию анода. Материалом для протектора служит один из активных металлов (цинк, магний, алюминий и их сплавы) — он принимает на себя большую часть электрохимической коррозии, разрушаясь и сохраняя главную конструкцию. Один анод из магния, к примеру, обеспечивает защиту 8 км трубопровода.

Абдюжанов Рустам, специально для рмнт.ру

Электрохимическая коррозия - самый распространенный вид коррозии. Электрохимическая возникает при контакте металла с окружающей электролитически проводящей средой. При этом восстановление окислительного компонента коррозионной среды протекает не одновременно с ионизацией атомов металла и от электродного потенциала металла зависят их скорости. Первопричиной электрохимической коррозии является термодинамическая неустойчивость металлов в окружающих их средах. Ржавление трубопровода, обивки днища морского суда, различных металлоконструкций в атмосфере - это, и многое другое, примеры электрохимической коррозии.

К электрохимической коррозии относятся такие виды местных разрушений, как питтинги , межкристаллитная коррозия , щелевая . Кроме того процессы электрохимической коррозии происходят в грунте , атмосфере , море .

Механизм электрохимической коррозии может протекать по двум вариантам:

1) Гомогенный механизм электрохимической коррозии:

Поверхностный слой мет. рассматривается как гомогенный и однородный;

Причиной растворения металла является термодинамическая возможность протекания катодного или же анодного актов;

К и А участки мигрируют по поверхности во времени;

Скорость протекания электрохимической коррозии зависит от кинетического фактора (времени);

Однородную поверхность можно рассматривать как предельный случай, который может быть реализован и в жидких металлах.

2) Гетерогенный механизм электрохимической коррозии:

У твердых металлов поверхность негомогенная, т.к. разные атомы занимают в сплаве различные положения в кристаллической решетке;

Гетерогенность наблюдается при наличии в сплаве инородных включений.

Электрохимическая коррозия имеет некоторые особенности: делится на два одновременно протекающих процесса (катодный и анодный), которые кинетически зависимы друг от друга; на некоторых участках поверхности электрохимическая коррозия может принять локальный характер; растворение основного мет. происходит именно на анодах.

Поверхность любого металла состоит из множества короткозамкнутых через сам металл микроэлектродов. Контактируя с коррозионной средой образующиеся гальванические элементы способствуют электрохимическому его разрушению.

Причины возникновения местных гальванических элементов могут быть самые разные:

1) неоднородность сплава

Неоднородность мет. фазы, обусловленная неоднородностью сплава и наличием микро- и макровключений;

Неравномерность окисных пленок на поверхности за счет наличия макро- и микропор, а также неравномерного образования вторичных продуктов коррозии;

Наличие на поверхности границ зерен кристаллов, выхода дислокации на поверхность, анизотропность кристаллов.

2) неоднородность среды

Область с ограниченным доступом окислителя будет анодом по отношению к области со свободным доступом, что ускоряет электрохимическую коррозию.

3) неоднородность физических условий

Облучение (облученный участок - анод);

Воздействие внешних токов (место входа блуждающего тока - катод, место выхода - анод);

Температура (по отношению к холодным участкам, нагретые являются анодами) и т. д.

При работе гальванического элемента одновременно протекает два электродных процесса:

Анодный - ионы металла переходят в раствор

Fe → Fe 2+ + 2e

Происходит реакция окисления.

Катодный - избыточные электроны ассимилируются молекулами или атомами электролита, которые при этом восстанавливаются. На катоде проходит реакция восстановления.

O 2 + 2H 2 O + 4e → 4OH - (кислородная деполяризация в нейтральных, щелочных средах)

O 2 + 4H + + 4e → 2H 2 O (кислородная деполяризация в кислых средах)

2 H + + 2e → H 2 (при водородной деполяризации).

Торможение анодного процесса приводит к торможению и катодного.

Коррозия металла происходит именно на аноде.

При соприкосновении двух электропроводящих фаз (например, мет. - среда), когда одна из них заряжена положительно, а другая отрицательно, между ними возникает разность потенциала. Это явление связано с возникновением двойного электрического слоя (ДЭС). Заряженные частицы располагаются несимметрично на границе раздела фаз.

Скачек потенциалов в процессе электрохимической коррозии может происходить из-за двух причин:

При достаточно большой энергии гидратации ионы металла могут отрываться и переходить в раствор, оставляя на поверхности эквивалентное число электронов, которые определяют ее отрицательный заряд. Отрицательно заряженная поверхность притягивает к себе катионы мет. из раствора. Так на границе раздела фаз возникает двойной электрический слой.

На поверхности металла разряжаются катионы электролита. Это приводит к тому, что поверхность мет. приобретает положительный заряд, который с анионами раствора образует двойной электрический слой.

Иногда возникает ситуация, когда поверхность не заряжена и, соответственно, отсутствует ДЭС. Потенциал, при котором это явление наблюдается называется потенциалом нулевого заряда (φ N). У каждого металла потенциал нулевого заряда свой.

Величина электродных потенциалов оказывает очень большое влияние на характер коррозионного процесса.

Скачок потенциала между двух фаз не может быть измерен, но при помощи компенсационного метода можно измерить электродвижущую силу элемента (ЭДС), который состоит из электрода сравнения (его потенциал условно принят за ноль) и исследуемого электрода. В качестве электрода сравнения берется стандартный водородный электрод. ЭДС гальванического элемента (стандартный водородный электрод и исследуемый элемент) называют электродным потенциалом. Электродами сравнения могут также выступать хлорсеребряный, каломельный, насыщенный медно-сульфатный.

Международной конвенцией в Стокгольме 1953г. решено при записях электрод сравнения всегда ставить слева. При этом ЭДС рассчитывать, как разность потенциалов правого и левого электродов.

E = Vп - Vл

Если положительный заряд внутри системы движется слева направо - ЭДС элемента считается положительной, при этом

E max =-(ΔG T)/mnF,

где F - число Фарадея. Если положительные заряды будут двигаться в противоположном направлении, то уравнение будет иметь вид:

E max =+(ΔG T)/mnF.

При коррозии в электролитах самыми распространенными и значимыми являются адсорбционные (адсорбция катионов или анионов на границе раздела фаз) и электродные потенциалы (переход катионов из металла в электролит или наоборот).

Электродный потенциал, при котором металл находится в состоянии равновесия с собственными ионами называется равновесный (обратимый). Он зависит от природы металлической фазы, растворителя, температуры электролита, активности ионов мет.

Равновесный потенциал подчиняется уравнению Нернста:

E=E ο + (RT/nF) Lnα Me n+

где, E ο - стандартный потенциал мет.; R - молярная газовая постоянная; n - степень окисления иона мет.; Т - температура; F - число Фарадея;α Me n+ - активность ионов мет.

При установленном равновесном потенциале электрохимическая коррозия не наблюдается.

Если по электроду проходит электрический ток - равновесное состояние его нарушается. Потенциал электрода изменяется в зависимости от направления и силы тока. Изменение разности потенц., приводящее к уменьшению силы тока, принято называть поляризацией. Уменьшение поляризуемости электродов называют деполяризацией.

Скорость электрохимической коррозии тем меньше, чем больше поляризация. Поляризация характеризуется величиной перенапряжения.

Поляризация бывает трех типов:

Электрохимическая (при замедлении анодного или катодного процессов);

Концентрационная (наблюдается, когда скорость подхода деполяризатора к поверхности и отвода продуктов коррозии мала);

Фазовая (связана с образованием на поверхности новой фазы).

Электрохимическая коррозия наблюдается также при контакте двух разнородных металлов. В электролите они образуют гальванопару. Более электроотрицательный из них будет анодом. Анод в процессе будет постепенно растворяться. При этом идет замедление или даже полное прекращение электрохимической коррозии на катоде (более электроположительном). Например, при контакте в морской воде дюралюминия с никелем интенсивно растворятся будет именно дюралюминий.

Химическая коррозия

Внешние факторы газовой коррозии. Газовая коррозия является частным случаем химической коррозии и возможна только в условиях, исключающих протекание электрохимических процессов. Характерной особенностью газовой коррозии является отсутствие на поверхности металла влаги. Поэтому в большинстве случаев речь идет о коррозии при повышенной температуре, при которой вода находится в газовой фазе. Однако, исходя из определения, можно представить себе газовую коррозию и при комнатной температуре, но в условиях высокой степени сухости, естественной или создаваемой искусственно. Так, при осушении силикагелем до точки росы – 30 °С влагоемкость воздуха составит 0,333 г/м 3 . При + 20 °С это соответствует влажности воздуха всего лишь 2 % . В таких усло-

виях протекание электрохимической коррозии практически исключается. В промышленности случаи газовой коррозии встречаются достаточно часто - от разрушения деталей, нагревательных печей до коррозии металла в процессе его термической обработки.

На скорость газовой коррозии влияет целый ряд факторов, и прежде всего такие, как температура и состав газовой среды.

Повышение температуры заметно увеличивает скорость коррозии. В первом приближении эта связь может быть описа-

на известным из физической химии уравнением Аррениуса

ln K = A -

где К - скорость реакции; А и В - константы; Т - абсолютная температура (°К) .

Из уравнения следует, что логарифм скорости коррозии ли­нейно связан с величиной, обратной абсолютной температуре. Эта зависимость в некоторых случаях (например, для меди в интервале температуры 700 – 900 °С ) полностью подтвержда­ется, но чаще она носит более сложный характер, что связано с влиянием вторичных реакций, природой и свойствами продук­тов коррозии и др.

В среде чистого воздуха коррозия сводится к взаимодействию металла с кислородом. Железо уже при температуре 300 °С покрывается на воздухе окалиной, т. е. окисной пленкой, различимой невооруженным глазом. В состав окалины входит магнетит F 3 O 4 и гематит Fe 2 O 3 . С ростом температуры, вплоть до 575 °С , скорость коррозии остается примерно постоянной, но, начиная с 575 0 С , резко увеличивается. Этот факт связывают с появлением на границе металл - окалина вюстита (окиси же­леза FеО ).

На поверхности углеродистой стали в процессе коррозии па­раллельно протекают две группы реакций: окисление железа до окислов с образованием окалины и реакции обезуглероживания c участием карбида железа (цементита) по следующему уравнению:

Fe 3 C + O 2 → 3Fe + CO 2 .

Таким образом, поверхностный слой металла обедняется це­ментитом. При длительном нагреве глубина обезуглероженного слоя может составлять несколько миллиметров. Это заметно влияет на свойства металла, и прежде всего на его твердость и прочность. Обезуглероживание наблюдается и при наличии в газовой среде углекислого газа, паров воды или других окис­лителей и протекает по аналогичным реакциям:

Fe 3 C + СО 2 → 3Fе + 2СО,

Fe 3 C + Н 2 O → 3Fe + СО + Н 2 .

Повышение давления газа при прочих равных условиях так­же сильно ускоряет газовую коррозию.

Специфично влияет на коррозионную стойкость стали водо­род, вызывая при повышенной температуре и давлении так на­зываемую водородную хрупкость, т. е. резкое снижение проч­ности. Водородная хрупкость объясняется не только обезугле­роживанием стали за счет восстановления цементита водородом, но и такими явлениями, как молизация атомарного водорода, находящегося в кристаллической решетке стали, и образование по границам зерен металла паров воды и метана. Каждый из процессов приводит к генерированию газа, создающего в замкнутом объеме металла колоссальное давление. Это в свою очередь вызывает появление многочисленных микротрещин, понижающих прочность металла.

Газовой коррозии сильно подвержены и многие цветные

металлы, хотя каждый из них относится к тем или иным газам поразному. Это можно проиллюстрировать данными табл. 2, в которой скорость коррозии металлов для наглядности дана в относительных единицах, при этом скорость коррозии железа в кислороде принята за 100.

Табл. 9 убедительно демонстрирует влияние природы ме­талла на скорость коррозии. Например, если при переходе от кислорода к парам воды коррозия вольфрама замедляется примерно в 20 раз, а меди - в 3,5 раза, то скорость коррозии железа при этом, наоборот, увеличивается.

Таблица 9

Газовая коррозия ряда металлов в некоторых средах

(температура 800 °С , продолжительность 24 ч )

Окисные пленки. Существенное влияние на скорость газовой коррозии ока­зывают образующиеся продукты коррозии, их физико - химические и механические свойства. В большинстве случаев корро­зия протекает в окислительной среде; при этом на поверхности металла в качестве продукта коррозии образуется окисная пленка. Впрочем, тонкая окисная пленка на металле обычно появляется уже при комнатной температуре. Свойства обра­зующейся окисной пленки решающим образом влияют на дальнейший ход коррозионного процесса. В случае резкого торможения процесса вплоть до полного прекращения корро­зии говорят о наступившей пассивности поверхности металла.

Термодинамика газовой коррозии. Термодинамическая возможность процесса газовой коррозии с образованием окисной пленки определяется величиной изменения свободной энергии системы. Существует удобная форма определения тер­модинамической возможности протекания коррозии за счет окисления металла, которая сводится к сравнению упругости диссоциации полученного продукта реакции окисления с парциальным давлением кислорода в газовой фазе.

Действительно, если парциальное давление кислорода Р O и упругость диссоциации окисла Р MeO в реакции окисления металла mМе + nO 2 Ме m O 2 n будут равны, то реакция будет находиться в равновесии. Если Р O > Р MeO , то реакция протекает слева направо в сторону образования окисла. Если Р O < Р MeO , то окисел самопроизвольно диссоциирует на кислород и металл. Поэтому сравнение упругости диссоциации данного окисла при данной температуре, например, с парциальным давлением кислорода воздуха (Р O 0,2 ат при атмосферном давлении) позволяет найти границу термодинами

ческой вероятности процесса окисления металла на воздухе. Так, судя по данным табл. 10, серебро уже при 400 °К не способно окисляться. Для меди эта граница лежит в области 2000 °К .

Таблица 10

Упругость диссоциации окислов серебра и меди

в зависимости от температуры

Процесс 300 0 К 400 0 К 500 0 К 800 0 К 1200 0 К 1600 0 К
Ag 2 O 2Ag + O 2 8,4 ∙ 10 -5 6,9 ∙ 10 -1 - - -
Cu 2 O 2Cu + O 2 - - 0,56 ∙ 10 - 30 3,7 ∙ 10 - 16 2 ∙ 10 - 8 1,8 ∙ 10 - 4

Свойства окисных пленок. В зависимости от условий образования окисные пленки могут иметь толщину от мономолекулярной до нескольких миллиметров. Различаются тонкие, средние и толстые пленки. Тонкие пленки имеют толщину от нескольких ангстрем до 400 Å . Они невидимы и могут быть обнаружены и измерены так называемым оптическим методом отражения поляризованного света.

Средние пленки имеют толщину 400 - 5000 Å и видны невоо­руженным глазом благодаря возникновению цветов побежа­лости (явление интерференции света, известное из физики). Их толщина может быть измерена различными методами, среди которых наиболее доступные гравиметрический (весо­вой) и электрометрический (метод катодного восстановления).

Пленки толщиной выше 5000 Å (т. е. толще 0,5 мк ) опреде­ляются весовым методом или методом катодного восстановле­ния, а также с помощью микроскопа, микрометра или других аналогичных мерительных инструментов. Обычно они легко обнаруживаются невооруженным глазом.

Следует отметить, что при изучении фазового состава и

структуры окисных пленок широко используются электронно-микроскопический, электронно-графический и рентгенографиче­ский методы исследования.

В табл. 11 даны примеры окисных пленок на железе. Обра­щает на себя внимание четкая зависимость толщины пленки от условий ее образования, а также сам диапазон толщины - от 15 Å до 0,6 мм .

Было бы ошибочным считать, что чем толще окисная плен­ка, тем она надежнее защищает металл от коррозии. В дейст­вительности дело обстоит скорее наоборот, а именно лучшими защитными свойствами обладают тонкие пленки. Однако тол­щина пленки, строго говоря, не является все же критерием защитной способности.

Чтобы окисная пленка обладала защитными свойствами, она должна быть прежде всего сплошной, беспористой. Усло­вие сплошности окисной пленки было сформулировано Пиллингом и Бедворсом: если объем окисла металла меньше, чем объем металла, из которого пленка образовалась, то пленка

образуется несплошной; если объем окисла металла больше, чем объем металла, то пленка может быть беспористой, ком­пактной.

Сказанное можно пояснить следующими неравенствами:

< 1 пленка не может быть сплошной; при > 1 пленка может быть сплошной.

В свою очередь

V Me = и V Me O = ,

где А - атомный вес металла (т. е. рассматривается грамм - атом металла); - плотность металла; М - молекулярный вес

окиси металла; n - число атомов металла в молекуле окиси; D - плотность окиси.

Таблица 11

Толщина окисной пленки на железе

в зависимости от условий

Условие сплошности является необходимым и существен­ным, но не единственным для характеристики защитных

свойств окисной пленки. При слишком больших значениях V Ме O / V Ме плёнка испытывает столь высокие внутренние на­пряжения, что разрушается, теряя сплошность. Например, при отношении V WO / V W = 3,35 окисная пленка вольфрама имеет весьма слабые защитные свойства.

Пленка должна иметь хорошее сцепление с металлом, должна быть достаточно прочной и эластичной. Коэффициенты теплового расширения пленки и металла должны быть доста­точно близки. Наконец, пленка должна быть химически стой­кой в условиях воздействия на нее коррозионной среды.

Важным условием является и необходимость ориентаци-

онного соответствия образующейся пленки металлу. Сущность ориентационного соответствия сводится к требованию макси­мального сходства кристаллических решеток металла и обра­зующегося окисла при минимальном смещении атомов. Чаще всего при наличии кристаллической структуры окисла, близкой структуре металла, защитные свойства такой пленки лучше, чем неориентированного по отношению к металлу окисла.

Законы роста окисных пленок. Если в результате коррозии образуется несплошная окисная пленка, кислород получает свободный доступ к поверхности металла. В этом случае ско­рость коррозии должна быть величиной постоянной:

где y - толщина окисной пленки. После интегрирования по­лучим уравнение

y = k + А,

выражающее линейную зависимость толщины пленки от времени. Постоянная А указывает на наличие некоторой окис­ной пленки к моменту начала окисления (у = А при = 0 ). Как следует из уравнения, скорость роста пленки в этом случае не зависит от ее толщины. Коррозия может протекать с постоянной скоростью вплоть до полного превращения металла в окисел, как это имеет место при окислении магния в среде кислорода.

Однако нередко фактическая скорость окисления, сохраняя постоянство, оказывается ниже теоретической скорости хими­ческой реакции окисления металла. Это несоответствие объяс­няется наличием на границе раздела металл - окисел металла тончайшей, вплоть до нескольких мономолекулярных слоев, сплошной пленки псевдоморфного окисла. Псевдоморфный окисел обладает высокой степенью ориентационного соответст­вия металлу и является, таким образом, своеобразным крис­таллографическим продолжением решетки окисляемого метал­ла, отличаясь в то же время по параметрам от решетки окисла металла. Будучи беспористым, он затрудняет проник­новение кислорода к поверхности металла.

Таким образом, даже в случае образования на металле толстой и рыхлой окисной пленки скорость коррозии в конеч­ном итоге будет лимитироваться не скоростью реакции окис­ления, а скоростью диффузии кислорода сквозь компактный псевдоморфный окисел.

Если в процессе коррозии образуется окисел, обладающий достаточно хорошими защитными свойствами, то скорость коррозии будет зависеть от соотношения скоростей взаимной диффузии сквозь пленку атомов кислорода к поверхности ме­талла и атомов металла к поверхности раздела фаз окисел - газ. Можно показать, что в этом случае по мере роста толщи­ны пленки скорость коррозии будет замедляться по уравне­нию

После интегрирования и объединения констант получаем параболическую зависимость толщины окисной пленки от продолжительности коррозии:

y 2 = k + А.

Такая зависимость наблюдается при окислении меди, нике­ля, вольфрама. Имея параболическую кривую зависимости коррозии от времени, можно определить скорость коррозии в любой точке кривой. Она будет выражаться как тангенс угла наклона касательной, проходящей через данную точку, так как

tg = .

Наконец, в некоторых условиях торможение скорости окисления металла с ростом толщины окисной пленки происходит более интенсивно, чем этого требует параболический закон. В этих случаях скорость окисления связана с толщиной плен­ки экспоненциальной зависимостью

После интегрирования приходим к логарифмическому урав­нению

у = ln (k ).

Логарифмический закон роста пленки имеет экспериментальное подтверждение при окислении на воздухе алюминия и цинка в интервале температуры 20 – 255 °C , меди - до 100 °С , железа до 385 °С .

Важно подчеркнуть, что закономерности роста пленки на металле могут меняться в зависимости от условий. Так, окис­ление железа при температуре ниже 385 °С подчиняется логарифмическому закону, в области выше этой температуры и до 1000 °С - параболическому, а при давлении кислорода ниже 1 мм рт. ст. и температуре 700 - 950 °С - линейному.

Разрушение пленок. В процессе роста окисной пленки в ней возникают значительные внутренние напряжения. Поэтому, если образующаяся пленка недостаточно прочна или име­ет слабое сцепление с металлом, или слишком неэластична, или по другим причинам, затронутым выше (например, разли­чие коэффициентов температурного расширения металла и пленки), она разрушается. Характер разрушения связан с причиной, вызвавшей его. Если прочность пленки велика, а сцепление с металлом недостаточно хорошее, образуются пузыри. Крупные пузыри приводят обычно к разрывам (рис. 68, а ), и защитные

а б в г д

Рис 68. Виды разрушения окисных пленок.

а - пузырь с разрывом; б - микропузыри в слое окисла (вакуумная пористость); в - отслаивание; г - растрескивание при

сдвиге; д - растрескивание на углах и реб­рах.

свойства пленки резко снижаются. В других случаях образуются мелкие пузыри в слое окисла (рис. 68, б ), и тогда защитные свойства пленки могут даже возрасти, так как подобная «вакуумная пористость» препятст­вует диффузии реагирующих атомов или ионов и таким обра­зом тормозит процесс коррозии. Может наблюдаться отслаи­вание окисла (рис. 68, в ), а также растрескивание на поверхности (рис. 68, г ) или на углах и ребрах (рис. 68, д ).

Методы защиты от газовой коррозии. Основной метод защиты от газовой коррозии сводится к применению легированных сплавов, обладающих так назы­ваемой жаростойкостью. Для снижения скорости окисления железа при 900 °С вдвое достаточно ввести 3,5 % алюминия, а вчетверо - около 5,5 % . Концентрация легирующего компо­нента может быть ничтожной. Так, расплавленный магний настолько энергично окисляется на воздухе, что способен самовозгораться. Однако при введении всего лишь 0,001 % бе­риллия скорость окисления магния резко снижается.

Действие легирующих элементов объясняется образовани­ем на поверхности металла защитных пленок. Они или образу­ются только из легирующего компонента, или состоят из смешанных окислов легирующего компонента и основного ме­талла. Наилучшими защитными свойствами обладают окислы типа шпинелей. Шпинельная структура окисла характеризу­ется высокой степенью компактности ионов в решетке и прак­тическим отсутствием вакантных узлов; это и обусловливает их высокую термодинамическую стабильность. Примером шпинелей являются окислы FeO ∙ Сr 2 О 3 на поверхности хромистой стали или NiO ∙ Сr 2 О 3 на поверхности хромо - никелевой стали.

Второй метод борьбы с газовой коррозией - применение защитной атмосферы. В зависимости от природы металла га­зовая среда не должна содержать окислителей (для стали) или, наоборот, восстановителей (для меди). В ряде случаев применяются инертные газы - азот, аргон. На практике этот метод встречается только в специальных случаях: при термо­обработке и сварке. Так, отжиг стали проводят в атмосфере, содержащей смесь азота, водорода и окиси углерода. Сварка алюминиево-магниевых и титановых деталей протекает ус­пешно в атмосфере аргона.

Третий метод снижения скорости газовой коррозии - защита поверхности металла специальными жаростойкими по

крытиями. В одних случаях поверхность, например стальной детали покрывают термодиффузионным способом сплавом железо - алюминий или железо - хром. Оба сплава обладают высокими защитными свойствами, а сам процесс на­зывается

соответственно алитированием и термохромированием. В других случаях поверхность защищают слоем кермета - смесью металла с окислами. Керамико - металлические покры­тия (керметы) интересны тем, что сочетают тугоплавкость, твердость и жаростойкость керамики с пластичностью и про­водимостью металла. В качестве неметаллической составляю­щей используют тугоплавкие окислы Al 2 O 3 , MgO и соединения - типа карбидов и нитридов. Металлическим компонентом слу­жат металлы группы железа, а также хром, вольфрам, молиб­ден.

Коррозия металлов (от позднелат. corrosio — разъедание) — физико-химическое взаимодействие металлического материала и среды, приводящее к ухудшению эксплуатационных свойств материала, среды или технической системы, частями которой они являются.

В основе коррозии металлов лежит химическая реакция между материалом и средой или между их компонентами, протекающая на границе раздела фаз. Это процесс является самопроизвольным, а также является следствием окислительно-восстановительных реакций с компонентами окружающей среды. Химические вещества, разрушающие строительные материалы, называются агрессивными. Агрессивной средой может служить атмосферный воздух, вода, различные растворы химических веществ, газы. Процесс разрушения материала усиливается при наличии в воде даже незначительного количества кислот или солей, в почвах при наличии в почвенной воде солей и колебаниях уровня грунтовых вод.

Коррозионные процессы классифицируют:

1) по условиям протекания коррозии,

2) по механизму процесса,

3) по характеру коррозионного разрушения.

По условиям протекания коррозии , которые весьма разнообразны, различают несколько видов коррозии.

Коррозионные среды и вызываемые ими разрушения столь характерны, что по названию этих сред классифицируются и протекающие в них коррозионные процессы. Так, выделяют газовую коррозию , т. е. химическую коррозию под действием горячих газов (при температуре много выше точки росы).

Характерны некоторые случаи электрохимической коррозии (преимущественно с катодным восстановлением кислорода) в природных средах: атмосферная - в чистом или загрязнённом воздухе при влажности, достаточной для образования на поверхности металла плёнки электролита (особенно в присутствии агрессивных газов, например СО 2 , Cl 2 , или аэрозолей кислот, солей и т. п.); морская - под действием морской воды и подземная - в грунтах и почвах.

Коррозия под напряжением развивается в зоне действия растягивающих или изгибающих механических нагрузок, а также остаточных деформаций или термических напряжений и, как правило, ведёт к транскристаллитному коррозионному растрескиванию, которому подвержены, например, стальные тросы и пружины в атмосферных условиях, углеродистые и нержавеющие стали в паросиловых установках, высокопрочные титановые сплавы в морской воде и т. д.

При знакопеременных нагрузках может проявляться коррозионная усталость , выражающаяся в более или менее резком понижении предела усталости металла в присутствии коррозионной среды. Коррозионная эрозия (или коррозия при трении ) представляет собой ускоренный износ металла при одновременном воздействии взаимно усиливающих друг друга коррозионных и абразивных факторов (трение скольжения, поток абразивных частиц и т. п.).

Родственная ей кавитационная коррозия возникает при кавитационных режимах обтекания металла агрессивной средой, когда непрерывное возникновение и «захлопывание» мелких вакуумных пузырьков создаёт поток разрушающих микрогидравлических ударов, воздействующих на поверхность металла. Близкой разновидностью можно считать и фреттинг- коррозию , наблюдаемую в местах контакта плотно сжатых или катящихся одна по другой деталей, если в результате вибраций между их поверхностями возникают микроскопические смещения сдвига.

Утечка электрического тока через границу металла с агрессивной средой вызывает в зависимости от характера и направления утечки дополнительные анодные и катодные реакции, могущие прямо или косвенно вести к ускоренному местному или общему разрушению металла (коррозию блуждающим током ). Сходные разрушения, локализуемые вблизи контакта, может вызвать соприкосновение в электролите двух разнородных металлов, образующих замкнутый гальванический элемент, - контактная коррозия .

В узких зазорах между деталями, а также под отставшим покрытием или наростом, куда проникает электролит, но затруднён доступ кислорода, необходимого для пассивации металла, может развиваться щелевая коррозия , при которой растворение металла в основном происходит в щели, а катодные реакции частично или полностью протекают рядом с ней на открытой поверхности.

Принято выделять также биологическую коррозию , идущую под влиянием продуктов жизнедеятельности бактерий и др. организмов, и радиационную коррозию - при воздействии радиоактивного излучения.

1 . Газовая коррозия - коррозия металлов в газах при высоких температурах (например, окисление и обезуглероживание стали при нагревании);

2. Атмосферная коррозия - коррозия металлов в атмосфере воздуха, а также любого влажного газа (например, ржавление стальных конструкций в цехе или на открытом воздухе);

Атмосферная коррозия является самым распространенным видом коррозии; около 80% металлоконструкций эксплуатируется в атмосферных условиях.
Основным фактором, определяющим механизм и скорость атмосферной коррозии, является степень увлажнения поверхности металла. По степени увлажнения различают три основных типа атмосферной коррозии:

  • Мокрая атмосферная коррозия – коррозия при наличии на поверхности металла видимой пленки воды (толщина пленки от 1мкм до 1 мм). Коррозия этого типа наблюдается при относительной влажности воздуха около 100%, когда имеет место капельная конденсация воды на поверхности металла, а также при непосредственном попадании воды на поверхность (дождь, гидроочистка поверхности и т. п.);
  • Влажная атмосферная коррозия – коррозия при наличии на поверхности металла тонкой невидимой пленки воды, которая образуется в результате каппилярной, адсорбционной или химической конденсации при относительной влажности воздуха ниже 100% (толщина пленки от 10 до 1000 нм);
  • Сухая атмосферная коррозия – коррозия при наличии на поверхности металла очень тонкой адсорбционной пленки воды (порядка нескольких молекулярных слоев общей толщиной от 1 до 10 нм), которую еще нельзя рассматривать, как сплошную и обладающую свойствами электролита.

Очевидно, что минимальные сроки коррозии имеют место при сухой атмосферной коррозии, которая протекает по механизму химической коррозии.

С увеличением толщины пленки воды происходит переход механизма коррозии от химического к электрохимическому, что соответствует быстрому возрастанию скорости коррозионного процесса.

Из приведенной зависимости видно, что максимуму скорости коррозии отвечает граница областей II и III, затем наблюдается некоторое замедление коррозии вследствие затруднения диффузии кислорода через утолщенный слой воды. Еще более толстые слои воды на поверхности металла (участок IV) приводят лишь к незначительному замедлению коррозии, так как в меньшей степени будут влиять на диффузию кислорода.

На практике не всегда можно так отчетливо разграничить эти три этапа атмосферной коррозии, так как в зависимости от внешних условий возможен переход от одного типа к другому. Так, например, металлоконструкция, которая корродировала по механизму сухой коррозии, при увеличении влажности воздуха начнет коррозировать по механизму влажной коррозии, а при выпадении осадков уже будет иметь место мокрая коррозия. При высыхании влаги процесс будет изменяться в обратном направлении.

На скорость атмосферной коррозии металлов оказывает влияние ряд факторов. Основным из них следует считать длительность увлажнения поверхности, которая определяется главным образом величиной относительной влажности воздуха. При этом в большинстве практических случаев скорость коррозии металла резко увеличивается только при достижении некоторой определенной критической величины относительной влажности, при которой появляется сплошная пленка влаги на поверхности металла в результате конденсации воды из воздуха.

Влияние относительной влажности воздуха на скорость атмосферной коррозии углеродистой стали показано на рисунке Зависимость увеличения массы продуктов коррозии m от относительной влажности воздуха W получена при экспозиции стальных образцов в атмосфере, содержащей 0,01% SO 2 , в течении 55 суток.

Очень сильно влияют на скорость атмосферной коррозии содержащиеся в воздухе примеси SO 2 , H 2 S, NH 3 , HCl и др. Растворяясь в пленке воды, они увеличивают ее электропроводность и

Твердые частицы из атмосферы, попадающие на поверхность металла, могут, растворяясь, действовать как вредные примеси (NaCl, Na 2 SO 4), либо в виде твердых частиц облегчать конденсацию влаги на поверхности (частицы угля, пыль, частицы абразива и т.п.).

На практике трудно выявить влияние отдельных факторов на скорость коррозии металла в конкретных условиях эксплуатации, но можно приблизительно оценить ее, исходя из обобщенных характеристик атмосферы (оценка дается в относительных единицах):

сухая континентальная — 1-9
морская чистая — 38
морская индустриальная — 50
индустриальная — 65
индустриальная, сильно загрязненная – 100.

3 . Жидкостная коррозия - коррозия металлов в жидкой среде: в неэлектролите (бром, расплавленная сера, органический растворитель, жидкое топливо) и в электролите (кислотная, щелочная, солевая, морская, речная коррозия, коррозия в расплавленных солях и щелочах). В зависимости от условий взаимодействия среды с металлом различают жидкостную коррозию металла при полном, неполном и переменном погружении, коррозию по ватерлинии (вблизи границы между погруженной и непогруженной в коррозионную среду частью металла), коррозию в неперемешиваемой (спокойной) и перемешиваемой (движущейся) коррозионной среде;

Жидкостная коррозия

4. Подземная коррозия - коррозию металлов в почвах и грунтах (например, ржавление подземных стальных трубопроводов);

Подземная коррозия

По своему механизму является электрохим. коррозией металлов. подземная коррозия обусловлена тремя факторами: коррозионной агрессивностью почв и грунтов (почвенная коррозия), действием блуждающих токов и жизнедеятельностью микроорганизмов.

Коррозионная агрессивность почв и грунтов определяется их структурой, грану-лометрич. составом, уд. электрич. сопротивлением, влажностью, воздухопроницаемостью, рН и др. Обычно коррозионную агрессивность грунта по отношению к углеродистым сталям оценивают по уд. электрич. сопротивлению грунта, средней плотности катодного тока при смещении электродного потенциала на 100 мВ отрицательнее коррозионного потенциала стали; по отношению к алюминию коррозионная активность грунта оценивается содержанием в нем ионов хлора, железа, значением рН, по отношению к свинцу-содержанием нитрат-ионов, гумуса, значением рН.

5. Биокоррозия - коррозия металлов под влиянием жизнедеятельности микроорганизмов (например, усиление коррозии стали в грунтах сульфат-редуцирующими бактериями);

Биокоррозия

Биокоррозия подземных сооружений обусловлена в осн. жизнедеятельностью сульфатвосстанавливающих, сероокис-ляющих и железоокисляющих бактерий, наличие к-рых устанавливают бактериологич. исследованиями проб грунта. Сульфатвосстанавливающие бактерии присутствуют во всех грунтах, но с заметной скоростью биокоррозия протекает только тогда, когда воды (или грунты) содержат 105-106 жизнеспособных бактерий в 1 мл (или в 1 г).

6. С труктурная коррозия - коррозия, связанную со структурной неоднородностью металла (например, ускорение коррозионного процесса в растворах H 2 S0 4 или НСl катодными включениями: карбидами в стали, графитом в чугуне, интерметаллидом СuА1 3 в дюралюминии);

Структурная коррозия

7. Коррозия внешним током - электрохимическая коррозия металлов под воздействием тока от внешнего источника (например, растворение стального анодного заземления станции катодной защиты подземного трубопровода);

Коррозия внешним током

8. Коррозия блуждающим током - электрохимическая коррозия металла (например, подземного трубопровода) под воздействием блуждающего тока;

Основные источники блуждающих токов в земле -электрифи-цир. железные дороги постоянного тока, трамвай, метрополитен, шахтный электротранспорт, линии электропередач постоянного тока по системе провод — земля. Наибольшие разрушения блуждающие токи вызывают в тех местах подземного сооружения, где ток стекает с сооружения в землю (т. наз. анодные зоны).Потери железа от коррозии блуждающими токами составляют 9,1 кг/А·год.

На подземные металлич. сооружения могут натекать токи порядка сотен ампер и при наличии повреждений в защитном покрытии плотность тока, стекающего с сооружения в анодной зоне, настолько велика, что за короткий период в стенках сооружения образуются сквозные повреждения. Поэтому при наличии анодных или знакопеременных зон на подземных металлич. сооружениях коррозия блуждающими токами обычно опаснее почвенной коррозии.

9. Контактная коррозия - электрохимическая коррозия, вызванная контактом металлов, имеющих разные стационарные потенциалы в данном электролите (например, коррозия в морской воде деталей из алюминиевых сплавов, находящихся в контакте с медными деталями).

Контактная коррозия

Контактная коррозия в электролитах с высокой электропроводностью может возникать в следующих частных случаях:

    при контакте низколегированной стали различных марок, если одна из них легирована медью и (или) никелем;

    при введении этих элементов в сварные швы в процессе сварки стали, не легированной этими элементами;

    при воздействии на конструкции из стали, не легированной медью и никелем, а также из оцинкованной стали или из алюминиевых сплавов, пыли, содержащей тяжелые металлы или их оксиды, гидрооксиды, соли; перечисленные материалы являются катодами по отношению к стали, алюминию, металлическим защитным покрытиям;

    при попадании на конструкции из перечисленных материалов потеков воды с корродирующих медных деталей;

    при попадании на поверхность конструкций из оцинкованной стали или алюминиевых сплавов графитовой либо железорудной пыли, коксовой крошки;

    при контакте алюминиевых сплавов между собой, если один сплав (катодный) легирован медью, а другой (анодный) ¾ нет;

10. щелевая коррозия - усиление коррозии в щелях и зазорах между металлами (например, в резьбовых и фланцевых соединениях стальных конструкций, находящихся в воде), а также в местах неплотного контакта металла с неметаллическим коррозионноинертным материалом. Присуща конструкциям из нержавеющей стали в агрессивных жидких средах, в которых материалы вне узких щелей и зазоров устойчивы благодаря пассивному состоянию т.е. вследствие образования на их поверхности защитной пленки;

11. Коррозия под напряжением - коррозия металлов при одновременном воздействии коррозионной среды и механических напряжений. В зависимости от характера нагрузок может быть коррозия при постоянной нагрузке (например, коррозия металла паровых котлов) и коррозия при переменной нагрузке (например, коррозия осей и штоков насосов, рессор, стальных канатов); одновременное воздействие коррозионной среды и знакопеременных или циклических растягивающих нагрузок часто вызывает коррозионную усталость - понижение предела усталости металла;

Коррозия под напряжением

12. Коррозионная кавитация - разрушение металла, вызванное одновременным коррозионным и ударным воздействием внешней среды (например, разрушение лопастей гребных винтов морских судов);

Коррозионная кавитация

Кавитация - (от лат. cavitas - пустота) - образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных газом, паром или их смесью. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить при увеличении её скорости (гидродинамическая кавитация). Перемещаясь с потоком в область с более высоким давлением или во время полупериода сжатия, кавитационный пузырек захлопывается, излучая при этом ударную волну.

Кавитация во многих случаях нежелательна. На устройствах, например, винтах и насосах, кавитация вызывает много шума, повреждает их составные части, вызывает вибрации и снижение эффективности.

Когда разрушаются кавитационные пузыри, энергия жидкости сосредотачивается в очень небольших объемах. Тем самым, образуются места повышенной температуры и возникают ударные волны, которые являются источниками шума. При разрушении каверн освобождается много энергии, что может вызвать основные повреждения. Кавитация может разрушить практически любое вещество. Последствия, вызванные разрушением каверн, ведут к большому износу составных частей и могут значительно сократить срок службы винта и насоса.

Для предотвращения кавитации

  • подбирают устойчивый к данному виду эрозии материал (молибденовые стали);
  • уменьшают шероховатость поверхности;
  • снижают турбулентность потока, уменьшают количество поворотов, делают их более плавными;
  • не допускают прямого удара эрозийной струи в стенку аппарата, применяя отражатели, рассекатели струй;
  • очищают газы и жидкости от твердых примесей;
  • не допускают работу гидравлических машин в режиме кавитации;
  • ведут систематический контроль за износом материала.

13. коррозия при трении (коррозионная эрозия) - разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения (например, разрушение шейки вала при трении о подшипник омываемый морской водой);

14. Фреттинг-коррозия - коррозия металлов при колебательном перемещение двух поверхностей относительно друг друга в условиях воздействия коррозионной среды (например, разрушение двух поверхностей металлических деталей машины, плотно соединенных болтами, в результате вибрации в окислительной атмосфере, содержащей кислород).

Фреттинг-коррозия

По механизму процесса различают химическую и электрохимическую коррозию металлов:

1. химическая коррозия - взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Примерами такого типа коррозии являются реакции, протекающие при соприкосновении металлоконструкций с кислородом или другими окисляющими газами при высокой температуре (свыше 100°С):

2 Fe + O 2 = FeO;

4FeO + 3O 2 = 2Fe 2 O 3 .

Если в результате химической коррозии образуется сплошная оксидная пленка, имеющая достаточно прочную адгезию с поверхностью металлоконструкции, то доступ кислорода к металлу затрудняется, коррозия замедляется, а затем прекращается. Пористая, плохо сцепленная с поверхностью конструкции оксидная пленка не защищает металл от коррозии. Когда объем оксида больше объема вступившего в реакцию окисления металла и оксид имеет достаточную адгезию с поверхностью металлоконструкции, такая пленка хорошо защищает металл от дальнейшего разрушения. Толщина защитной пленки оксида колеблется от нескольких молекулярных слоев (5-10)х10 –5 мм до нескольких микронов.

Окисление материала металлоконструкций, соприкасающихся с газовой средой, происходит в котлах, дымовых трубах котельных, водонагревателях, работающих на газовом топливе, теплообменниках, работающих на жидком и твердом топливе. Если бы газообразная среда не содержала диоксида серы или других агрессивных примесей, а взаимодействие металлоконструкций со средой происходило при постоянной температуре по всей плоскости конструкции, то относительно толстая оксидная пленка служила бы достаточно надежной защитой от дальнейшей коррозии. Но в связи с тем, что тепловое расширение металла и оксида различно, оксидная пленка отслаивается местами, что создает условия для дальнейшей коррозии.

Газовая коррозия стальных конструкций может протекать вследствие не только окислительных, но и восстановительных процессов. При сильном нагреве стальных конструкций под высоким давлением в среде, содержащей водород, последний диффундирует в объем стали и разрушает материал по двойному механизму – обезуглероживания вследствие взаимодействия водорода с углеродом

Fe 3 OC + 2H 2 = 3Fe + CH 4 O

и придания стали свойств хрупкости вследствие растворения в ней водорода – «водородная хрупкость».

2. Электрохимическая коррозия - взаимодействие металла с коррозионной средой (раствором электролита), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном, акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

При контакте с воздухом на поверхности конструкции появляется тонкая пленка влаги, в которой растворяются примеси, находящиеся в воздухе, например диоксид углерода. При этом образуются растворы, способствующие электрохимической коррозии. Различные участки поверхности любого металла обладают разными потенциалами.

Причинами этого могут быть наличие примесей в металле, различная обработка отдельных его участков, неодинаковые условия (окружающая среда), в которых находятся различные участки поверхности металла. При этом участки поверхности металла с более электроотрицательным потенциалом становятся анодами и растворяются.

Электрохимическая коррозия – явление сложное, состоящее из нескольких элементарных процессов. На анодных участках протекает анодный процесс – в раствор переходят ионы металла (Ме), а избыточные электроны (е), оставаясь в металле, движутся к катодному участку. На катодных участках поверхности металла избыточные электроны поглощаются ионами, атомами или молекулами электролита (деполяризаторами), которые восстанавливаются:

е + Д → [Де],

где Д – деполяризатор; е – электрон.

Интенсивность коррозионного электрохимического процесса зависит от скорости анодной реакции, при которой ион металла переходит из кристаллической решетки в раствор электролита, и катодной, заключающейся в ассимиляции освобождающихся при анодной реакции электронов.

Возможность перехода иона металла в электролит определяется силой связи с электронами в междоузлиях кристаллической решетки. Чем сильнее связь между электронами и атомами, тем труднее переход иона металла в электролит. В электролитах имеются положительно заряженные частицы – катионы и отрицательно заряженные – анионы. Анионы и катионы присоединяют к себе молекулы воды.

Структура молекул воды обусловливает ее полярность. Между заряженными ионами и полярными молекулами воды возникает электростатическое взаимодействие, вследствие которого полярные молекулы воды определенным образом ориентируются вокруг анионов и катионов.

При переходе ионов металлов из кристаллической решетки в раствор электролита освобождается эквивалентное число электронов. Таким образом на границе «металл – электролит» образуется двойной электрический слой, в котором металл заряжен отрицательно, электролит – положительно; возникает скачок потенциала.

Способность ионов металла переходить в раствор электролита характеризуется электродным потенциалом, который представляет собой энергетическую характеристику двойного электрического слоя.

Когда этот слой достигает разности потенциалов, переход ионов в раствор прекращается (наступает равновесное состояние).

Коррозионная диаграмма: К, К’ - катодные поляризационные кривые; А, A’ - анодные поляризационные кривые.

По характеру коррозионного разрушения различают следующие виды коррозии:

1. сплошную, или общую коррозию , охватывающую всю поверхность металла, находящуюся под воздействием данной коррозионной среды. Сплошная коррозия характерна для стали, алюминия, цинковых и алюминиевых защитных покрытий в любых средах, в которых коррозионная стойкость данного материала или металла покрытия недостаточно высока.

Этот вид коррозии характеризуется относительно равномерным по всей поверхности постепенным проникновением в глубь металла, т. е. уменьшением толщины сечения элемента или толщины защитного металлического покрытия.

При коррозии в нейтральных, слабощелочных и слабокислых средах элементы конструкций покрываются видимым слоем продуктов коррозии, после механического удаления которого до чистого металла поверхность конструкций оказывается шероховатой, но без очевидных язв, точек коррозии и трещин; при коррозии в кислых (а для цинка и алюминия и в щелочных) средах видимый слой продуктов коррозии может не образоваться.

Наиболее подверженными этому виду коррозии участками, как правило, являются узкие щели, зазоры, поверхности под головками болтов, гайками, другие участки скопления пыли, влаги по той причине, что на этих участках фактическая продолжительность коррозии больше, чем на открытых поверхностях.

Сплошная коррозия бывает:

* равномерной, которая протекает с одинаковой скоростью по всей поверхности металла (например, коррозия углеродистой стали в растворах H 2 S0 4);

* неравномерной, которая протекает с неодинаковой скоростью на различных участках поверхности металла (например, коррозия углеродистой стали в морской воде);

* избирательной, при которой разрушается одна структурная составляющая сплава (графитизация чугуна) или один компонент сплава (обесцинкование латуней).

2. местную коррозию, охватывающую отдельные участки поверхности металла.

Местная коррозия бывает:

* коррозия пятнами характерна для алюминия, алюминиевых и цинковых покрытий в средах, в которых их коррозионная стойкость близка к оптимальной, и лишь случайные факторы могут вызвать местное нарушение состояния устойчивости материала.

Этот вид коррозии характеризуется небольшой глубиной проникновения коррозии по сравнению с поперечными (в поверхности) размерами коррозионных поражений. Пораженные участки покрываются продуктами коррозии как и при сплошной коррозии. При выявлении этого вида коррозии необходимо установить причины и источники временных местных повышений агрессивности среды за счет попадания на поверхность конструкции жидких сред (конденсата, атмосферной влаги при протечках и т. п.), локального накопления или отложения солей, пыли и т. д.

* коррозия язвами характерна в основном для углеродистой и низкоуглеродистой стали (в меньшей степени - для алюминия, алюминиевых и цинковых покрытий) при эксплуатации конструкций в жидких средах и грунтах.

Язвенная коррозия низколегированной стали в атмосферных условиях чаще всего связана с неблагоприятной структурой металла, т. е. с повышенным количеством неметаллических включений, в первую очередь сульфидов с высоким содержанием марганца.

Язвенная коррозия характеризуется появлением на поверхности конструкции отдельных или множественных повреждений, глубина и поперечные размеры которых (от долей миллиметра до нескольких миллиметров) соизмеримы.

Обычно сопровождается, образованием толстых слоев продуктов коррозии, покрывающих всю поверхность металла или значительные ее участки вокруг отдельных крупных язв (характерно для коррозии незащищенных стальных конструкций в грунтах). Язвенная коррозия листовых конструкций, а также элементов конструкций из тонкостенных труб и прямоугольных элементов замкнутого сечения со временем переходит в сквозную с образованием отверстий в стенках толщиной до нескольких миллиметров.

Язвы являются острыми концентраторами напряжений и могут оказаться инициаторами зарождения усталостных трещин и хрупких разрушений. Для оценки скорости язвенной коррозии и прогнозирования ее развития в последующий период определяют средние скорости проникновения коррозии в наиболее глубоких язвах и количество язв на единицу поверхности. Эти данные в дальнейшем следует использовать при расчете несущей способности элементов конструкций.

* точечная (питтинговая) коррозия характерна для алюминиевых сплавов, в том числе анодированных, и нержавеющей стали. Низколегированная сталь подвергается коррозии этого вида крайне редко.

Практически обязательным условием развития питтинговой коррозии является воздействие хлоридов, которые могут попадать на поверхность конструкций на любой стадии, начиная от металлургического производства (травление проката) до эксплуатации (в виде солей, аэрозолей, пыли).

При обнаружении питтинговой коррозии необходимо выявить источники хлоридов и возможности исключения их воздействия на металл. Питтинговая коррозия представляет собой разрушение в виде отдельных мелких (не более 1 - 2 мм в диаметре) и глубоких (глубина больше поперечных размеров) язвочек.

* сквозная коррозия , которая вызывает разрушение металла насквозь (например, при точечной или язвенной коррозии листового металла);

* нитевидная коррозия , распространяющаяся в виде нитей преимущественно под неметаллическими защитными покрытиями (например, на углеродистой стали под пленкой лака);

* подповерхностная коррозия , начинающаяся с поверхности, но преимущественно распространяющейся под поверхностью металла таким образом, что разрушение и продукты коррозии оказываются сосредоточенными в некоторых областях внутри металла; подповерхностная коррозия часто вызывает вспучивание металла и его расслоение (например, образование пузырей на поверхности
недоброкачественного прокатанного листового металла при коррозии или травлении);

* межкристаллитная коррозия характерна для нержавеющей стали и упрочненных алюминиевых сплавов, особенно на участках сварки, и характеризуется относительно равномерным распределением множественных трещин на больших участках поверхности конструкций. Глубина трещин, обычно меньше, чем их размеры на поверхности. На каждом участке развития, этого вида коррозии трещины практически одновременно зарождаются от многих источников, связь которых с внутренними или рабочими напряжениями, не является обязательной. Под оптическим микроскопом на поперечных шлифах, изготавливаемых из отобранных проб, видно, что трещины распространяются только по границам зерен металла. Отдельные зерна и блоки могут выкрошиваться, в результате чего образуются язвы и поверхностное шелушение. Этот вид коррозии ведет к быстрой потере металлом прочности и пластичности;

* ножевая коррозия - локализованная коррозия металла, имеющая вид надреза ножом в зоне сплавления сварных соединений в сильно агрессивных средах (например, случаи коррозии сварных швов хромоникелевой стали Х18Н10 с повышенным содержанием углерода в крепкой HN0 3).

* коррозионное растрескивание — вид квазихрупкого разрушения стали и высокопрочных алюминиевых сплавов при одновременном воздействии статических напряжений растяжения и агрессивных сред; характеризуется образованием единичных и множественных трещин, связанных с концентрацией основных рабочих и внутренних напряжений. Трещины могут распространяться между кристаллами или по телу зерен, но с большей скоростью в плоскости, нормальной к действующим напряжениям, чем в плоскости поверхности.

Углеродистая и низколегированная сталь обычной и повышенной прочности подвергается этому виду коррозии в ограниченном количестве сред: горячих растворах щелочей и нитратов, смесях СО - СО 2 - Н 2 - Н 2 О и в средах, содержащих аммиак или сероводород. Коррозионное растрескивание высокопрочной стали, например высокопрочных болтов, и высокопрочных алюминиевых сплавов может развиваться в атмосферных условиях и в различных жидких средах.

При установлении факта поражения конструкции коррозионным растрескиванием необходимо убедиться в отсутствии признаков других форм квазихрупкого разрушения (хладноломкости, усталости).

* коррозионная хрупкость , приобретенная металлом в результате коррозии (например, водородное охрупчивание труб из высокопрочных сталей в условиях сероводородных нефтяных скважин); под хрупкостью следует понимать свойство материала разрушаться без заметного поглощения механической энергии в необратимой форме.

Количественная оценка коррозии. Скорость общей коррозии оценивают по убыли металла с единицы площади коррозии, например в г/м 2 ч, или по скорости проникновения коррозии, т. е. по одностороннему уменьшению толщины нетронутого металла (П ), например в мм/год.

При равномерной коррозии П = 8,75К/ρ , где ρ - плотность металла в г/см 3 . При неравномерной и местной коррозии оценивается максимальное проникновение. По ГОСТу 13819-68 установлена 10-балльная шкала общей коррозионной стойкости (см. табл.). В особых случаях К. может оцениваться и по др. показателям (потеря механической прочности и пластичности, рост электрического сопротивления, уменьшение отражательной способности и т. д.), которые выбираются в соответствии с видом К. и назначением изделия или конструкции.

10-балльная шкала для оценки общей коррозионной стойкости металлов

Группа стойкости

Скорость коррозии металла,

мм/год.

Балл

Совершенно стойкие

|Менее 0,001

1

Весьма стойкие

Свыше 0,001 до 0,005

2

Свыше 0,005 до 0,01

3

Стойкие

Свыше 0,01 до 0,05

4

Свыше 0,05 до 0,1

5

Пониженно-стойкие

Свыше 0,1 до 0,5

6

Свыше 0,5 до 1,0

7

Малостойкие

Свыше 1,0 до 5,0

8

Свыше 5,0 до 10,0

9

Нестойкие

Свыше 10,0

10

При подборе материалов, стойких к воздействию различных агрессивных сред в тех или иных конкретных условиях, пользуются справочными таблицами коррозионной и химической стойкости материалов или проводят лабораторные и натурные (непосредственно на месте и в условиях будущего применения) коррозионные испытания образцов, а также целых полупромышленных узлов и аппаратов. Испытания в условиях, более жёстких, чем эксплуатационные, называют ускоренными.

Применение различных методов защиты металлов от коррозии позволяет в какой-то степени свести к минимуму потери металла от коррозии. В зависимости от причин, вызывающих коррозию, различают следующие методы защиты.

1) Обработка внешней среды, в которой протекает коррозия . Сущность метода заключается либо в удалении из окружающей среды тех веществ, которые выполняют роль деполяризатора, либо в изоляции металла от деполяризатора. Например, для удаления из воды кислорода используют специальные вещества или кипячение.

Удаление кислорода из коррозионной среды называется деаэрацией . Максимально замедлить процесс коррозии можно путем введения в окружающую среду специальных веществ – ингибиторов . Широкое распространение получили летучие и парофазные ингибиторы, которые защищают от атмосферной коррозии изделия из черных и цветных металлов при хранении, транспортировке и т.д.

Ингибиторы применяются при очистке паровых котлов от накипи, для снятия окалины с отработанных деталей, а также при хранении и перевозке соляной кислоты в стальной таре. В качестве органических ингибиторов применяют тиомочевину (химическое название — сульфид-диамид углерода C(NH 2) 2 S), диэтиламин, уротропин (CH 2) 6 N 4) и другие производные аминов.

В качестве неорганических ингибиторов применяют силикаты (соединения металла с кремнием Si), нитриты (соединения с азотом N), дихроматы щелочных металлов и т.д. Механизм действия ингибиторов заключается в том, что их молекулы адсорбируются на поверхности металла, препятствуя протеканию электродных процессов.

2) Защитные покрытия . Для изоляции металла от окружающей среды на него наносят различного рода покрытия: лаки, краски, металлические покрытия. Наиболее распространенными являются лакокрасочные покрытия, однако их механические свойства значительно ниже, чем у металлических. Последние по характеру защитного действия можно разделить на анодные и катодные.

Анодные покрытия . Если на металл нанести покрытие из другого, более электроотрицательного металла, то в случае возникновения условий для электрохимической коррозии разрушаться будет покрытие, т.к. оно будет выполнять роль анода. Примером анодного покрытия может служить хром, нанесенный на железо.

Катодные покрытия . У катодного покрытия стандартный электродный потенциал более положителен, чем у защищаемого металла. Пока слой покрытия изолирует металл от окружающей среды, электрохимическая коррозия не протекает. При нарушении сплошности катодного покрытия оно перестает защищать металл от коррозии. Более того, оно даже интенсифицирует коррозию основного металла, т.к. в возникающей гальванопаре анодом служит основной металл, который будет разрушаться. В качестве примера можно привести оловянное покрытие на железе (луженое железо).

Таким образом, при сравнении свойств анодных и катодных покрытий можно сделать вывод, что наиболее эффективными являются анодные покрытия. Они защищают основной металл даже в случае нарушения целостности покрытия, тогда как катодные покрытия защищают металл лишь механически.

3) Электрохимическая защита . Различают два вида электрохимической защиты: катодная и протекторная. В обоих случаях создаются условия для возникновения на защищаемом металле высокого электроотрицательного потенциала.

Протекторная защита . Защищаемое от коррозии изделие соединяют с металлическим ломом из более электроотрицательного металла (протектора). Это равносильно созданию гальванического элемента, в котором протектор является анодом и будет разрушаться. Например, для защиты подземных сооружений (трубопроводов) на некотором расстоянии от них закапывают металлолом (протектор), присоединив его к сооружению.

Катодная защита отличается от протекторной тем, что защищаемая конструкция, находящаяся в электролите (почвенная вода), присоединяется к катоду внешнего источника тока. В ту же среду помещают кусок металлолома, который соединяют с анодом внешнего источника тока. Металлический лом подвергается разрушению, предохраняя тем самым от разрушения защищаемую конструкцию.

Во многих случаях металл предохраняет от коррозии образующаяся на его поверхности стойкая оксидная пленка (так, на поверхности алюминия образуется Al 2 O 3 , препятствующий дальнейшему окислению металла). Однако некоторые ионы, например Cl – , разрушают такие пленки и тем самым усиливают коррозию.

Коррозия металлов наносит большой экономический вред. Человечество несет огромные материальные потери в результате коррозии трубопроводов, деталей машин, судов, мостов, морских конструкций и технологического оборудования.

Коррозия приводит к уменьшению надежности работы оборудования: аппаратов высокого давления, паровых котлов, мета ллических контейнеров для токсичных и радиоактивных веществ, лопастей и роторов турбин, деталей самолетов и т.д. С учетом возможной коррозии приходится завышать прочность этих изделий, а значит, увеличивать расход металла, что приводит к дополнительным экономическим затратам. Коррозия приводит к простоям производства из-за замены вышедшего из строя оборудования, к потерям сырья и продукции (утечка нефти, газов, воды), к энергетическим затратам для преодоления дополнительных сопротивлений, вызванных уменьшением проходных сечений трубопроводов из-за отложения ржавчины и других продуктов коррозии. Коррозия также приводит к загрязнению продукции, а значит, и к снижению ее качества.

Затраты на возмещение потерь, связанных с коррозией, исчисляются миллиардами рублей в год. Специалисты подсчитали, что в развитых странах стоимость потерь, связанных с коррозией, составляет 3…4% валового национального дохода.

За долгий период интенсивной работы металлургической промышленности выплавлено огромное количество металла и переведено в изделия. Этот металл постоянно корродирует. Сложилась такая ситуация, что потери металла от коррозии в мире уже составляют около 30% от его годового производства. Считается, что 10% прокорродировавшего металла теряется (в основном в виде ржавчины) безвозвратно. Возможно, в будущем установится баланс, при котором от коррозии будет теряться примерно столько же металла, сколько его будет выплавляться вновь. Из всего сказанного следует, что важнейшей проблемой является изыскание новых и совершенствование старых способов защиты от коррозии.

Список литературы

    Козловский А.С. Кровельные работы. – М.: «Высшая школа», 1972

    Акимов Г. В., Основы учения о коррозии и защите металлов, М., 1946;

    Томашов Н. Д., Теория коррозии и защита металлов, М., 1959;

    Эванс Ю. P., Коррозия и окисление металлов, пер. с англ., М., 1962;

    Розенфельд И. Л., Атмосферная коррозия металлов, М., 1960;