Таблица критических значений t критерия стьюдента. Распределение t-критерия Стьюдента для проверки гипотезы о средней и расчета доверительного интервала в MS Excel

Проверка статистической гипотезы позволяет сделать строгий вывод о характеристиках генеральной совокупности на основе выборочных данных. Гипотезы бывают разные. Одна из них – это гипотеза о средней (математическом ожидании). Суть ее в том, чтобы на основе только имеющейся выборки сделать корректное заключение о том, где может или не может находится генеральная средняя (точную правду мы никогда не узнаем, но можем сузить круг поиска).

Общий подход в проверке гипотез описан , поэтому сразу к делу. Предположим для начала, что выборка извлечена из нормальной совокупности случайных величин X с генеральной средней μ и дисперсией σ 2 (знаю-знаю, что так не бывает, но не нужно меня перебивать!). Средняя арифметическая из этой выборки, очевидно, сама является случайной величиной. Если извлечь много таких выборок и посчитать по ним средние, то они также будут иметь с математическим ожиданием μ и

Тогда случайная величина

Возникает вопрос: будет ли генеральная средняя c вероятностью 95% находиться в пределах ±1,96s x̅ . Другими словами, являются ли распределения случайных величин

эквивалентными.

Впервые этот вопрос был поставлен (и решен) одним химиком, который трудился на пивной фабрике Гиннеса в г. Дублин (Ирландия). Химика звали Уильям Сили Госсет и он брал пробы пива для проведения химического анализа. В какой-то момент, видимо, Уильяма стали терзать смутные сомнения на счет распределения средних. Оно получалось немного более размазанным, чем должно быть у нормального распределения.

Собрав математическое обоснование и рассчитав значения функции обнаруженного им распределения, химик из Дублина Уильям Госсет написал заметку, которая была опубликована в мартовском выпуске 1908 года журнала «Биометрика» (главред – Карл Пирсон). Т.к. Гиннесс строго-настрого запретил выдавать секреты пивоварения, Госсет подписался псевдонимом Стьюдент.

Несмотря на то что, К. Пирсон уже изобрел распределение , все-таки всеобщее представление о нормальности еще доминировало. Никто не собирался думать, что распределение выборочных оценок может быть не нормальным. Поэтому статья У. Госсета осталась практически не замеченной и забытой. И только Рональд Фишер по достоинству оценил открытие Госсета. Фишер использовал новое распределение в своих работах и дал ему название t-распределение Стьюдента . Критерий для проверки гипотез, соответственно, стал t-критерием Стьюдента . Так произошла «революция» в статистике, которая шагнула в эру анализа выборочных данных. Это был краткий экскурс в историю.

Посмотрим, что же мог увидеть У. Госсет. Сгенерируем 20 тысяч нормальных выборок из 6-ти наблюдений со средней () 50 и среднеквадратичным отклонением (σ ) 10. Затем нормируем выборочные средние, используя генеральную дисперсию :

Получившиеся 20 тысяч средних сгруппируем в интервалы длинной 0,1 и подсчитаем частоты. Изобразим на диаграмме фактическое (Norm) и теоретическое (ENorm) распределение частот выборочных средних.

Точки (наблюдаемые частоты) практически совпадают с линией (теоретическими частотами). Оно и понятно, ведь данные взяты из одной и то же генеральной совокупности, а отличия – это лишь ошибки выборки.

Проведем новый эксперимент. Нормируем средние, используя выборочную дисперсию .

Снова подсчитаем частоты и нанесем их на диаграмму в виде точек, оставив для сравнения линию стандартного нормального распределения. Обозначим эмпирическое частоты средних, скажем, через букву t .

Видно, что распределения на этот раз не очень-то и совпадают. Близки, да, но не одинаковы. Хвосты стали более «тяжелыми».

У Госсета-Стьюдента не было последней версии MS Excel, но именно этот эффект он и заметил. Почему так получается? Объяснение заключается в том, что случайная величина

зависит не только от ошибки выборки (числителя), но и от стандартной ошибки средней (знаменателя), которая также является случайной величиной.

Давайте немного разберемся, какое распределение должно быть у такой случайной величины. Вначале придется кое-что вспомнить (или узнать) из математической статистики. Есть такая теорема Фишера, которая гласит, что в выборке из нормального распределения:

1. средняя и выборочная дисперсия s 2 являются независимыми величинами;

2. соотношение выборочной и генеральной дисперсии, умноженное на количество степеней свободы, имеет распределение χ 2 (хи-квадрат) с таким же количеством степеней свободы, т.е.

где k – количество степеней свободы (на английском degrees of freedom (d.f.))

На этом законе основывается множество других результатов в статистике нормальных моделей.

Вернемся к распределению средней. Разделим числитель и знаменатель выражения

на σ X̅ . Получим

Числитель – это стандартная нормальная случайная величина (обозначим ξ (кси)). Знаменатель выразим из теоремы Фишера.

Тогда исходное выражение примет вид

Это и есть в общем виде (стьюдентово отношение). Вывести функцию его распределения можно уже непосредственно, т.к. распределения обеих случайных величин в данном выражении известны. Оставим это удовольствие математикам.

Функция t-распределения Стьюдента имеет довольно сложную для понимания формулу, поэтому не имеет смысла ее разбирать. Все равно ей никто не пользуется, т.к. вероятности приведены в специальных таблицах распределения Стьюдента (иногда называют таблицами коэффициентов Стьюдента), либо забиты в формулы ПЭВМ.

Итак, вооружившись новыми знаниями, вы сможете понять официальное определение распределения Стьюдента.
Случайной величиной, подчиняющейся распределению Стьюдента с k степенями свободы, называется отношение независимых случайных величин

где ξ распределена по стандартному нормальному закону, а χ 2 k подчиняется распределению χ 2 c k степенями свободы.

Таким образом, формула критерия Стьюдента для средней арифметической

Есть частный случай стьюдентова отношения

Из формулы и определения следует, что распределение т-критерия Стьюдента зависит лишь от количества степеней свободы.

При k > 30 t-критерий практически не отличается от стандартного нормального распределения.

В отличие от хи-квадрат, t-критерий может быть одно- и двухсторонним. Обычно пользуются двухсторонним, предполагая, что отклонение может происходить в обе стороны от средней. Но если условие задачи допускает отклонение только в одну сторону, то разумно применять односторонний критерий. От этого немного увеличивается мощность, т.к. при фиксированном уровне значимости критическое значение немного приближается к нулю.

Условия применения t-критерия Стьюдента

Несмотря на то, что открытие Стьюдента в свое время совершило переворот в статистике, t-критерий все же довольно сильно ограничен в возможностях применения, т.к. сам по себе происходит из предположения о нормальном распределении исходных данных. Если данные не являются нормальными (что обычно и бывает), то и t-критерий уже не будет иметь распределения Стьюдента. Однако в силу действия центральной предельной теоремы средняя даже у ненормальных данных быстро приобретает колоколообразную форму распределения.

Рассмотрим, для примера, данные, имеющие выраженный скос вправо, как у распределения хи-квадрат с 5-ю степенями свободы.

Теперь создадим 20 тысяч выборок и будет наблюдать, как меняется распределение средних в зависимости от их объема.

Отличие довольно заметно в малых выборках до 15-20-ти наблюдений. Но дальше оно стремительно исчезает. Таким образом, ненормальность распределения – это, конечно, нехорошо, но некритично.

Больше всего t-критерий «боится» выбросов, т.е. аномальных отклонений. Возьмем 20 тыс. нормальных выборок по 15 наблюдений и в часть из них добавим по одному случайном выбросу.

Картина получается нерадостная. Фактические частоты средних сильно отличаются от теоретических. Использование t-распределения в такой ситуации становится весьма рискованной затеей.

Итак, в не очень малых выборках (от 15-ти наблюдений) t-критерий относительно устойчив к ненормальному распределению исходных данных. А вот выбросы в данных сильно искажают распределение t-критерия, что, в свою очередь, может привести к ошибкам статистического вывода, поэтому от аномальных наблюдений следует избавиться. Часто из выборки удаляют все значения, выходящие за пределы ±2 стандартных отклонения от средней.

Пример проверки гипотезы о математическом ожидании с помощью t- критерия Стьюдента в MS Excel

В Excel есть несколько функций, связанных с t-распределением. Рассмотрим их.

СТЬЮДЕНТ.РАСП – «классическое» левостороннее t-распределение Стьюдента. На вход подается значение t-критерия, количество степеней свободы и опция (0 или 1), определяющая, что нужно рассчитать: плотность или значение функции. На выходе получаем, соответственно, плотность или вероятность того, что случайная величина окажется меньше указанного в аргументе t-критерия.

СТЬЮДЕНТ.РАСП.2Х – двухсторонне распределение. В качестве аргумента подается абсолютное значение (по модулю) t-критерия и количество степеней свободы. На выходе получаем вероятность получить такое или еще больше значение t-критерия, т.е. фактический уровень значимости (p-level).

СТЬЮДЕНТ.РАСП.ПХ – правостороннее t-распределение. Так, 1-СТЬЮДЕНТ.РАСП(2;5;1) = СТЬЮДЕНТ.РАСП.ПХ(2;5) = 0,05097. Если t-критерий положительный, то полученная вероятность – это p-level.

СТЬЮДЕНТ.ОБР – используется для расчета левостороннего обратного значения t-распределения. В качестве аргумента подается вероятность и количество степеней свободы. На выходе получаем соответствующее этой вероятности значение t-критерия. Отсчет вероятности идет слева. Поэтому для левого хвоста нужен сам уровень значимости α , а для правого 1 — α .

СТЬЮДЕНТ.ОБР.2Х – обратное значение для двухстороннего распределения Стьюдента, т.е. значение t-критерия (по модулю). Также на вход подается уровень значимости α . Только на этот раз отсчет ведется с двух сторон одновременно, поэтому вероятность распределяется на два хвоста. Так, СТЬЮДЕНТ.ОБР(1-0,025;5) = СТЬЮДЕНТ.ОБР.2Х(0,05;5) = 2,57058

СТЬЮДЕНТ.ТЕСТ – функция для проверки гипотезы о равенстве математических ожиданий в двух выборках. Заменяет кучу расчетов, т.к. достаточно указать лишь два диапазона с данными и еще пару параметров. На выходе получим p-level.

ДОВЕРИТ.СТЬЮДЕНТ – расчет доверительного интервала средней с учетом t-распределения.

Рассмотрим такой учебный пример. На предприятии фасуют цемент в мешки по 50кг. В силу случайности в отдельно взятом мешке допускается некоторое отклонение от ожидаемой массы, но генеральная средняя должна оставаться 50кг. В отделе контроля качества случайным образом взвесили 9 мешков и получили следующие результаты: средняя масса () составила 50,3кг, среднеквадратичное отклонение (s ) – 0,5кг.

Согласуется ли полученный результат с нулевой гипотезой о том, что генеральная средняя равна 50кг? Другими словами, можно ли получить такой результат по чистой случайности, если оборудование работает исправно и выдает среднее наполнение 50 кг? Если гипотеза не будет отклонена, то полученное различие вписывается в диапазон случайных колебаний, если же гипотеза будет отклонена, то, скорее всего, в настройках аппарата, заполняющего мешки, произошел сбой. Требуется его проверка и настройка.

Краткое условие в обще принятых обозначениях выглядит так.

H 0: μ = 50 кг

H 1: μ ≠ 50 кг

Есть основания предположить, что распределение заполняемости мешков подчиняются нормальному распределению (или не сильно от него отличается). Значит, для проверки гипотезы о математическом ожидании можно использовать t-критерий Стьюдента. Случайные отклонения могут происходить в любую сторону, значит нужен двухсторонний t-критерий.

Вначале применим допотопные средства: ручной расчет t-критерия и сравнение его с критическим табличным значением. Расчетный t-критерий:

Теперь определим, выходит ли полученное число за критический уровень при уровне значимости α = 0,05. Воспользуемся таблицей t-распределения Стьюдента (есть в любом учебнике по статистике).

По столбцам идет вероятность правой части распределения, по строкам – число степеней свободы. Нас интересует двухсторонний t-критерий с уровнем значимости 0,05, что равносильно t-значению для половины уровня значимости справа: 1 — 0,05/2 = 0,975. Количество степеней свободы – это объем выборки минус 1, т.е. 9 — 1 = 8. На пересечении находим табличное значение t-критерия – 2,306. Если бы мы использовали стандартное нормальное распределение, то критической точкой было бы значение 1,96, а тут она больше, т.к. t-распределение на небольших выборках имеет более приплюснутый вид.

Сравниваем фактическое (1,8) и табличное значение (2.306). Расчетный критерий оказался меньше табличного. Следовательно, имеющиеся данные не противоречат гипотезе H 0 о том, что генеральная средняя равна 50 кг (но и не доказывают ее). Это все, что мы можем узнать, используя таблицы. Можно, конечно, еще p-level попробовать найти, но он будет приближенным. А, как правило, именно p-level используется для проверки гипотез. Поэтому далее переходим в Excel.

Готовой функции для расчета t-критерия в Excel нет. Но это и не страшно, ведь формула t-критерия Стьюдента довольно проста и ее можно легко соорудить прямо в ячейке Excel.

Получили те же 1,8. Найдем вначале критическое значение. Альфа берем 0,05, критерий двухсторонний. Нужна функция обратного значения t-распределения для двухсторонней гипотезы СТЬЮДЕНТ.ОБР.2Х.

Полученное значение отсекает критическую область. Наблюдаемый t-критерий в нее не попадает, поэтому гипотеза не отклоняется.

Однако это тот же способ проверки гипотезы с помощью табличного значения. Более информативно будет рассчитать p-level, т.е. вероятность получить наблюдаемое или еще большее отклонение от средней 50кг, если эта гипотеза верна. Потребуется функция распределения Стьюдента для двухсторонней гипотезы СТЬЮДЕНТ.РАСП.2Х.

P-level равен 0,1096, что больше допустимого уровня значимости 0,05 – гипотезу не отклоняем. Но теперь можно судить о степени доказательства. P-level оказался довольно близок к тому уровню, когда гипотеза отклоняется, а это наводит на разные мысли. Например, что выборка оказалась слишком мала для обнаружения значимого отклонения.

Пусть через некоторое время отдел контроля снова решил проверить, как выдерживается стандарт заполняемости мешков. На этот раз для большей надежности было отобрано не 9, а 25 мешков. Интуитивно понятно, что разброс средней уменьшится, а, значит, и шансов найти сбой в системе становится больше.

Допустим, были получены те же значения средней и стандартного отклонения по выборке, что и в первый раз (50,3 и 0,5 соответственно). Рассчитаем t-критерий.


Критическое значение для 24-х степеней свободы и α = 0,05 составляет 2,064. На картинке ниже видно, что t-критерий попадает в область отклонения гипотезы.

Можно сделать вывод о том, что с доверительной вероятностью более 95% генеральная средняя отличается от 50кг. Для большей убедительности посмотрим на p-level (последняя строка в таблице). Вероятность получить среднюю с таким или еще большим отклонением от 50, если гипотеза верна, составляет 0,0062, или 0,62%, что при однократном измерении практически невозможно. В общем, гипотезу отклоняем, как маловероятную.

Расчет доверительного интервала с помощью t-распределения Стьюдента

С проверкой гипотез тесно связан еще один статистический метод – расчет доверительных интервалов . Если в полученный интервал попадает значение, соответствующее нулевой гипотезе, то это равносильно тому, что нулевая гипотеза не отклоняется. В противном случае, гипотеза отклоняется с соответствующей доверительной вероятностью. В некоторых случаях аналитики вообще не проверяют гипотез в классическом виде, а рассчитывают только доверительные интервалы. Такой подход позволяет извлечь еще больше полезной информации.

Рассчитаем доверительные интервалы для средней при 9 и 25 наблюдениях. Для этого воспользуемся функцией Excel ДОВЕРИТ.СТЬЮДЕНТ. Здесь, как ни странно, все довольно просто. В аргументах функции нужно указать только уровень значимости α , стандартное отклонение по выборке и размер выборки. На выходе получим полуширину доверительного интервала, то есть значение которое нужно отложить по обе стороны от средней. Проведя расчеты и нарисовав наглядную диаграмму, получим следующее.

Как видно, при выборке в 9 наблюдений значение 50 попадает в доверительный интервал (гипотеза не отклоняется), а при 25-ти наблюдениях не попадает (гипотеза отклоняется). При этом в эксперименте с 25-ю мешками можно утверждать, что с вероятностью 97,5% генеральная средняя превышает 50,1 кг (нижняя граница доверительного интервала равна 50,094кг). А это довольно ценная информация.

Таким образом, мы решили одну и ту же задачу тремя способами:

1. Древним подходом, сравнивая расчетное и табличное значение t-критерия
2. Более современным, рассчитав p-level, добавив степень уверенности при отклонении гипотезы.
3. Еще более информативным, рассчитав доверительный интервал и получив минимальное значение генеральной средней.

Важно помнить, что t-критерий относится к параметрическим методам, т.к. основан на нормальном распределении (у него два параметра: среднее и дисперсия). Поэтому для его успешного применения важна хотя бы приблизительная нормальность исходных данных и отсутствие выбросов.

Напоследок предлагаю посмотреть видеоролик о том, как проводить расчеты, связанные с t-критерием Стьюдента в Excel.

​ t-критерий Стьюдента – общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

1. История разработки t-критерия

Данный критерий был разработан Уильямом Госсетом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны, статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).

2. Для чего используется t-критерий Стьюдента?

t-критерий Стьюдента используется для определения статистической значимости различий средних величин. Может применяться как в случаях сравнения независимых выборок (например, группы больных сахарным диабетом и группы здоровых ), так и при сравнении связанных совокупностей (например, средняя частота пульса у одних и тех же пациентов до и после приема антиаритмического препарата ).

3. В каких случаях можно использовать t-критерий Стьюдента?

Для применения t-критерия Стьюдента необходимо, чтобы исходные данные имели нормальное распределение . В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства (гомоскедастичности) дисперсий .

При несоблюдении этих условий при сравнении выборочных средних должны использоваться аналогичные методы непараметрической статистики , среди которых наиболее известными являются U-критерий Манна - Уитни (в качестве двухвыборочного критерия для независимых выборок), а также критерий знаков и критерий Вилкоксона (используются в случаях зависимых выборок).

4. Как рассчитать t-критерий Стьюдента?

Для сравнения средних величин t-критерий Стьюдента рассчитывается по следующей формуле:

где М 1 - средняя арифметическая первой сравниваемой совокупности (группы), М 2 - средняя арифметическая второй сравниваемой совокупности (группы), m 1 - средняя ошибка первой средней арифметической, m 2 - средняя ошибка второй средней арифметической.

5. Как интерпретировать значение t-критерия Стьюдента?

Полученное значение t-критерия Стьюдента необходимо правильно интерпретировать. Для этого нам необходимо знать количество исследуемых в каждой группе (n 1 и n 2). Находим число степеней свободы f по следующей формуле:

f = (n 1 + n 2) - 2

После этого определяем критическое значение t-критерия Стьюдента для требуемого уровня значимости (например, p=0,05) и при данном числе степеней свободы f по таблице (см. ниже ).

Сравниваем критическое и рассчитанное значения критерия:

  • Если рассчитанное значение t-критерия Стьюдента равно или больше критического, найденного по таблице, делаем вывод о статистической значимости различий между сравниваемыми величинами.
  • Если значение рассчитанного t-критерия Стьюдента меньше табличного, значит различия сравниваемых величин статистически не значимы.

6. Пример расчета t-критерия Стьюдента

Для изучения эффективности нового препарата железа были выбраны две группы пациентов с анемией. В первой группе пациенты в течение двух недель получали новый препарат, а во второй группе - получали плацебо. После этого было проведено измерение уровня гемоглобина в периферической крови. В первой группе средний уровень гемоглобина составил 115,4±1,2 г/л, а во второй - 103,7±2,3 г/л (данные представлены в формате M±m ), сравниваемые совокупности имеют нормальное распределение. При этом численность первой группы составила 34, а второй - 40 пациентов. Необходимо сделать вывод о статистической значимости полученных различий и эффективности нового препарата железа.

Решение: Для оценки значимости различий используем t-критерий Стьюдента, рассчитываемый как разность средних значений, поделенная на сумму квадратов ошибок:

После выполнения расчетов, значение t-критерия оказалось равным 4,51. Находим число степеней свободы как (34 + 40) - 2 = 72. Сравниваем полученное значение t-критерия Стьюдента 4,51 с критическим при р=0,05 значением, указанным в таблице: 1,993. Так как рассчитанное значение критерия больше критического, делаем вывод о том, что наблюдаемые различия статистически значимы (уровень значимости р<0,05).

В ходе рассмотрения примера мы будем использовать вымышленные сведения, чтобы читатель мог провести необходимые преобразования самостоятельно.

Так, допустим, в ходе исследований изучали влияние препарата А на содержание вещества В (в ммоль/г) в ткани С и концентрацию вещества D в крови (в ммоль/л) у пациентов, разделенных по какому-то признаку Е на 3 группы равного объема (n = 10). Результаты такого выдуманного исследования приведены в таблице:

Содержание вещества B, ммоль/г

Вещество D, ммоль/л

прирост концентрации


Хотим вас предупредить, что выборки объема 10 рассматриваются нами для простоты представления данных и вычислений, на практике такого объема выборок обычно оказывается недостаточно для формирования статистического заключения.

В качестве примера рассмотрим данные 1-го столбца таблицы.

Описательные статистики

Выборочное среднее

Среднее арифметическое, которое очень часто называют просто «среднее», получают путем сложения всех значений и деления этой суммы на число значений в наборе. Это можно показать с помощью алгебраической формулы. Набор n наблюдений переменной x можно изобразить как x 1 , x 2 , х 3 , ..., x n

Формула для определения среднего арифметического наблюдений (произносится «икс с чертой»):

= (Х 1 + Х 2 + ... + X n) / n

= (12 + 13 + 14 + 15 + 14 + 13 + 13 + 10 + 11 + 16) / 10 = 13,1;

Выборочная дисперсия

Один из способов измерения рассеяния данных за­ключается в том, чтобы определить степень отклоне­ния каждого наблюдения от средней арифметической. Очевидно, что чем больше отклонение, тем больше изменчивость, вариабельность наблюдений. Однако мы не можем использовать среднее этих отклоненийкак меру рассеяния, потому что положительные от­клонения компенсируют отрицательные отклонения (их сумма равна нулю). Чтобы решить эту проблему, мы возводим в квадрат каждое отклонение и находим среднее возведенных в квадрат отклонений; эта величина называется вариацией, или дисперсией. Возьмем n наблюдений x 1 , x 2 , х 3 , ..., x n , средняя которых равняется . Вычисляем диспер сию, обычно обозначаемую как s 2 , этих наблюдений:

Выборочная дисперсия данного показателя равна s 2 = 3,2.

Среднеквадратичное отклонение

Стандартное (среднеквадратичное) отклоне­ние — это положительный квадратный корень из дисперсии. На примере n наблюдений это выглядит следующим образом:

Мы можем представить себе стандартное отклоне­ние как своего рода среднее отклонение наблюдений от среднего. Оно вычисляется в тех же единицах (размерностях), что и исходные данные.

s = sqrt (s 2) = sqrt (3,2) = 1,79 .

Коэффициент вариации

Если разделить стандартное отклонение на сред­нее арифметическое и выразить результат в процен­тах, то получится коэффициент вариации.

CV = (1,79 / 13,1) * 100% = 13,7

Ошибка выборочного среднего

1,79 / sqrt (10) = 0,57 ;

Коэффициент Стьюдента t (одновыборочный t-критерий)

Применяется для проверки гипотезы об отличии среднего значения от некоторого известного значения m

Количество степеней свободы рассчитывается как f=n-1.

В данном случае доверительный интервал для среднего заключен между границами 11,87 и 14,39.

Для уровня доверительной вероятности 95% m=11,87 или m=14,39, то есть= |13,1-11,82| = |13,1-14,38| = 1,28

Соответственно, в данном случае для числа степеней свободы f = 10 - 1 = 9 и уровня доверительной вероятности 95% t=2,26.

Диалог Основные статистики и таблицы

В модуле Основные статистики и таблицы выберем Описательные статистики .

Откроется диалоговое окно Описательные статистики .

В поле Перменные выберем Группу 1 .

Нажав на Ок , получим таблицы результатов с описательными статистиками выбранных переменных.

Откроется диалоговое окно Одновыборочный t-критерий .

Предположим, нам известно, что среднее содержание вещества B в ткани С равно 11.

Таблица результатов с описательными статистиками и t-критерием Стьюдента выглядит следующим образом:

Нам пришлось отвергнуть гипотезу о том, что среднее содержание вещества В в ткани С равно 11.

Так как вычисленное значение критерия больше табличного (2,26), нулевая гипотеза отвергается на выбранном уровне значимости, и различия между выборкой и известной величиной признаются статистически значимыми. Таким образом, вывод о существовании различий, сделанный с помощью критерия Cтьюдента, подтверждается с помощью данного метода.

В каких случаях можно использовать t-критерий Стьюдента?

Для применения t-критерия Стьюдента необходимо, чтобы исходные данные имели нормальное распределение . В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства (гомоскедастичности) дисперсий .

При несоблюдении этих условий при сравнении выборочных средних должны использоваться аналогичные методы непараметрической статистики , среди которых наиболее известными являются U-критерий Манна - Уитни (в качестве двухвыборочного критерия для независимых выборок), а также критерий знаков и критерий Вилкоксона (используются в случаях зависимых выборок).

Для сравнения средних величин t-критерий Стьюдента рассчитывается по следующей формуле:

где М 1 - средняя арифметическая первой сравниваемой совокупности (группы), М 2 - средняя арифметическая второй сравниваемой совокупности (группы), m 1 - средняя ошибка первой средней арифметической, m 2 - средняя ошибка второй средней арифметической.

Как интерпретировать значение t-критерия Стьюдента?

Полученное значение t-критерия Стьюдента необходимо правильно интерпретировать. Для этого нам необходимо знать количество исследуемых в каждой группе (n 1 и n 2). Находим число степеней свободы f по следующей формуле:

f = (n 1 + n 2) - 2

После этого определяем критическое значение t-критерия Стьюдента для требуемого уровня значимости (например, p=0,05) и при данном числе степеней свободы f по таблице (см. ниже ).

Сравниваем критическое и рассчитанное значения критерия:

· Если рассчитанное значение t-критерия Стьюдента равно или больше критического, найденного по таблице, делаем вывод о статистической значимости различий между сравниваемыми величинами.

· Если значение рассчитанного t-критерия Стьюдента меньше табличного, значит различия сравниваемых величин статистически не значимы.

Пример расчета t-критерия Стьюдента

Для изучения эффективности нового препарата железа были выбраны две группы пациентов с анемией. В первой группе пациенты в течение двух недель получали новый препарат, а во второй группе - получали плацебо. После этого было проведено измерение уровня гемоглобина в периферической крови. В первой группе средний уровень гемоглобина составил 115,4±1,2 г/л, а во второй - 103,7±2,3 г/л (данные представлены в формате M±m ), сравниваемые совокупности имеют нормальное распределение. При этом численность первой группы составила 34, а второй - 40 пациентов. Необходимо сделать вывод о статистической значимости полученных различий и эффективности нового препарата железа.

Решение: Для оценки значимости различий используем t-критерий Стьюдента, рассчитываемый как разность средних значений, поделенная на сумму квадратов ошибок:

После выполнения расчетов, значение t-критерия оказалось равным 4,51. Находим число степеней свободы как (34 + 40) - 2 = 72. Сравниваем полученное значение t-критерия Стьюдента 4,51 с критическим при р=0,05 значением, указанным в таблице: 1,993. Так как рассчитанное значение критерия больше критического, делаем вывод о том, что наблюдаемые различия статистически значимы (уровень значимости р<0,05).

Распределение Фишера – это распределение случайной величины

где случайные величины Х 1 и Х 2 независимы и имеют распределения хи – квадрат с числом степеней свободы k 1 и k 2 соответственно. При этом пара (k 1 , k 2) – пара «чисел степеней свободы» распределения Фишера, а именно, k 1 – число степеней свободы числителя, а k 2 – число степеней свободы знаменателя. Распределение случайной величины F названо в честь великого английского статистика Р.Фишера (1890-1962), активно использовавшего его в своих работах.

Распределение Фишера используют при проверке гипотез об адекватности модели в регрессионном анализе, о равенстве дисперсий и в других задачах прикладной статистики.

Таблица критических значений Стьюдента.

Начало формы

Число степеней свободы, f Значение t-критерия Стьюдента при p=0.05
12.706
4.303
3.182
2.776
2.571
2.447
2.365
2.306
2.262
2.228
2.201
2.179
2.160
2.145
2.131
2.120
2.110
2.101
2.093
2.086
2.080
2.074
2.069
2.064
2.060
2.056
2.052
2.048
2.045
2.042
2.040
2.037
2.035
2.032
2.030
2.028
2.026
2.024
40-41 2.021
42-43 2.018
44-45 2.015
46-47 2.013
48-49 2.011
50-51 2.009
52-53 2.007
54-55 2.005
56-57 2.003
58-59 2.002
60-61 2.000
62-63 1.999
64-65 1.998
66-67 1.997
68-69 1.995
70-71 1.994
72-73 1.993
74-75 1.993
76-77 1.992
78-79 1.991
80-89 1.990
90-99 1.987
100-119 1.984
120-139 1.980
140-159 1.977
160-179 1.975
180-199 1.973
1.972
1.960

Метод позволяет проверить гипотезу о том, что средние значения двух ге­неральных совокупностей, из которых извлечены сравниваемые зависимые вы­борки, отличаются друг от друга. Допущение зависимости чаще всего значит, что признак измерен на одной и той же выборке дважды, например, до воз­действия и после него. В общем же случае каждому представителю одной вы­борки поставлен в соответствие представитель из другой выборки (они по­парно объединены) так, что два ряда данных положительно коррелируют друг с другом. Более слабые виды зависимости выборок: выборка 1 - мужья, вы­борка 2 - их жены; выборка 1 - годовалые дети, выборка 2 составлена из близнецов детей выборки 1, и т. д.

Проверяемая статистическая гипотеза, как и в предыдущем случае, Н 0: М 1 = М 2 (средние значения в выборках 1 и 2 равны).При ее отклонении принимается альтернативная гипотеза о том, что М 1 больше (меньше) М 2 .

Исходные предположения для статистической проверки:

□ каждому представителю одной выборки (из одной генеральной совокупно­сти) поставлен в соответствие представитель другой выборки (из другой генеральной совокупности);

□ данные двух выборок положительно коррелируют (образуют пары);

□ распределение изучаемого признака и в той и другой выборке соответству­ет нормальному закону.

Структура исходных данных: имеется по два значения изучаемого признака для каждого объекта (для каждой пары).

Ограничения: распределения признака и в той, и в другой выборке должно суще­ственно не отличаться от нормального; данные двух измерений, соответству­ющих той и другой выборке, положительно коррелируют.

Альтернативы: критерий Т-Вилкоксона, если распределение хотя бы для одной выборки существенно отличается от нормального; критерий t-Стьюдента для независимых выборок - если данные для двух выборок не корре­лируют положительно.

Формула для эмпирического значения критерия t-Стьюдента отражает тот факт, что единицей анализа различий является разность (сдвиг) значений при­знака для каждой пары наблюдений. Соответственно, для каждой из N пар значений признака сначала вычисляется разность d i = х 1 i - x 2 i .

(3) где M d – средняя разность значений; σ d – стандартное отклонение разностей.

Пример расчета:

Предположим, в ходе проверки эффективности тренинга каждому из 8 членов груп­пы задавался вопрос «Насколько часто твое мнение совпадаете мнением группы?» - дважды, до и после тренинга. Для ответов использовалась 10-балльная шкала: 1 - никогда, 5 - в половине случаев, 10 - всегда. Проверялась гипотеза о том, что в результате тренинга самооценка конформизма (стремления быть как другие в группе) участников возрастет (α = 0,05). Составим таблицу для промежуточных вычислений (таблица 3).

Таблица 3

Среднее арифметической для разности M d = (-6)/8= -0,75. Вычтем это значение из каждого d (предпоследний столбец таблицы).

Формула для стандартного отклонения отличается лишь тем, что вместо Х в ней фигурирует d.Подставляем все нужные значения, получаем

σ d = = 0,886.

Ш а г 1. Вычисляем эмпирическое значение критерия по формуле (3): средняя раз­ность M d = -0,75; стандартное отклонение σ d = 0,886; t э = 2,39; df = 7.

Ш а г 2. Определяем по таблице критических значений критерия t-Стьюдента р-уровень значимости. Для df = 7 эмпирическое значение находится меж­ду критическими для р = 0,05 и р - 0,01. Следовательно, р < 0,05.

df Р
0,05 0,01 0,001
2,365 3,499 5,408

Ш а г 3. Принимаем статистическое решение и формулируем вывод. Статистичес­кая гипотеза о равенстве средних значений отклоняется. Вывод: показатель само­оценки конформизма участников после тренинга увеличился статистически досто­верно (на уровне значимости р < 0,05).

К параметрическим методам относится и сравнение дисперсий двух выборок по критерию F-Фишера. Иногда этот метод приводит к ценным содержатель­ным выводам, а в случае сравнения средних для независимых выборок срав­нение дисперсий является обязательной процедурой.

Для вычисления F эмп нужно найти отношение дисперсий двух выборок, причем так, чтобы большая по величине дисперсия находилась бы в числителе, а меньшая знаменателе.

Сравнение дисперсий . Метод позволяет проверить гипотезу о том, что дисперсии двух генераль­ных совокупностей, из которых извлечены сравниваемые выборки, отлича­ются друг от друга. Проверяемая статистическая гипотеза Н 0: σ 1 2 = σ 2 2 (дисперсия в выборке 1 равна дисперсии в выборке 2). При ее отклонении принимается альтернативная гипотеза о том, что одна дисперсия больше другой.

Исходные предположения : две выборки извлекаются случайно из разных ге­неральных совокупностей с нормальным распределением изучаемого признака.

Структура исходных данных: изучаемый признак измерен у объектов (ис­пытуемых), каждый из которых принадлежит к одной из двух сравниваемых выборок.

Ограничения: распределения признака и в той, и в другой выборке суще­ственно не отличаются от нормального.

Альтернатива методу: критерий Ливена (Levene"sTest), применение которого не требует проверки предположения о нормальности (используется в программе SPSS).

Формула для эмпирического значения критерия F-Фишера:

(4)

где σ 1 2 - большая дисперсия, a σ 2 2- меньшая дисперсия. Так как заранее не известно, какая дисперсия больше, то для определения р-уровня применяется Таблица критических значений для ненаправленных альтернатив. Если F э > F Kp для соответствующего числа степеней свободы, то р < 0,05 и статистическую гипотезу о равенстве дисперсий можно отклонить (для α = 0,05).

Пример расчета:

Детям давались обычные арифметические задания, после чего одной случайно выбранной половине учащихся сообщали, что они не выдержали испытания, а ос­тальным - обратное. Затем у каждого ребенка спрашивали, сколько секунд ему потребовалось бы для решения аналогичной задачи. Экспериментатор вычислял разность между называемым ребенком временем и результатом выполненного за­дания (в сек.). Ожидалось, что сообщение о неудаче вызовет некоторую неадекват­ность самооценки ребенка. Проверяемая гипотеза (на уровне α = 0,005) состояла в том, что дисперсия совокупности самооценок не зависит от сообщений об удаче или неудаче (Н 0: σ 1 2=σ 2 2).

Были получены следующие данные:


Ш а г 1. Вычислим эмпирическое значение критерия и числа степеней свободы по формулам (4):

Шаг 2. По таблице критических значений критерия f-Фишера для ненаправлен­ных альтернатив находим критическое значение для df числ = 11; df знам = 11. Однако критическое значение есть только для df числ = 10 и df знам = 12. Боль­шее число степеней свободы брать нельзя, поэтому берем критическое значение для df числ = 10: Для р = 0,05 F Kp = 3,526; для р = 0,01 F Kp = 5,418.

Ш а г 3. Принятие статистического решения и содержательный вывод. Поскольку эмпирическое значение превышает критическое значение для р = 0,01 (и тем бо­лее - для р = 0,05), то в данном случае р < 0,01 и принимается альтернативная гипо­теза: дисперсия в группе 1 превышает дисперсию в группе 2 (р < 0,01). Следователь­но, после сообщения о неудаче неадекватность самооценки выше, чем после сооб­щения об удаче.

/ практикум-статистика / справочные материалы / значения t-критерия стьюдента

Значение t -критерия Стьюдента при уровне значимости 0,10, 0,05 и 0,01

ν – степени свободы вариации

Стандартные значения критерия Стьюдента

Число степеней свободы

Уровни значимости

Число степеней свободы

Уровни значимости

Таблица XI

Стандартные значения критерия Фишера, используемые для оценки достоверности различий между двумя выборками

Степени свободы

Уровень значимости

Степени свободы

Уровень значимости

t-Критерий Стьюдента

t-критерий Стьюдента - общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

t -статистика строится обычно по следующему общему принципу: в числителе случайная величина с нулевым математическим ожиданием (при выполнении нулевой гипотезы), а в знаменателе - выборочное стандартное отклонение этой случайной величины, получаемое как квадратный корень из несмешенной оценки дисперсии.

История

Данный критерий был разработан Уильямом Госсетом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).

Требования к данным

Для применения данного критерия необходимо, чтобы исходные данные имели нормальное распределение. В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства дисперсий. Существуют, однако, альтернативы критерию Стьюдента для ситуации с неравными дисперсиями.

Требование нормальности распределения данных является необходимым для точного t {\displaystyle t} -теста. Однако, даже при других распределениях данных возможно использование t {\displaystyle t} -статистики. Во многих случаях эта статистика асимптотически имеет стандартное нормальное распределение - N (0 , 1) {\displaystyle N(0,1)} , поэтому можно использовать квантили этого распределения. Однако, часто даже в этом случае используют квантили не стандартного нормального распределения, а соответствующего распределения Стьюдента, как в точном t {\displaystyle t} -тесте. Асимптотически они эквивалентны, однако на малых выборках доверительные интервалы распределения Стьюдента шире и надежнее.

Одновыборочный t-критерий

Применяется для проверки нулевой гипотезы H 0: E (X) = m {\displaystyle H_{0}:E(X)=m} о равенстве математического ожидания E (X) {\displaystyle E(X)} некоторому известному значению m {\displaystyle m} .

Очевидно, при выполнении нулевой гипотезы E (X ¯) = m {\displaystyle E({\overline {X}})=m} . С учётом предполагаемой независимости наблюдений V (X ¯) = σ 2 / n {\displaystyle V({\overline {X}})=\sigma ^{2}/n} . Используя несмещенную оценку дисперсии s X 2 = ∑ t = 1 n (X t − X ¯) 2 / (n − 1) {\displaystyle s_{X}^{2}=\sum _{t=1}^{n}(X_{t}-{\overline {X}})^{2}/(n-1)} получаем следующую t-статистику:

t = X ¯ − m s X / n {\displaystyle t={\frac {{\overline {X}}-m}{s_{X}/{\sqrt {n}}}}}

При нулевой гипотезе распределение этой статистики t (n − 1) {\displaystyle t(n-1)} . Следовательно, при превышении значения статистики по абсолютной величине критического значения данного распределения (при заданном уровне значимости) нулевая гипотеза отвергается.

Двухвыборочный t-критерий для независимых выборок

Пусть имеются две независимые выборки объемами n 1 , n 2 {\displaystyle n_{1}~,~n_{2}} нормально распределенных случайных величин X 1 , X 2 {\displaystyle X_{1},~X_{2}} . Необходимо проверить по выборочным данным нулевую гипотезу равенства математических ожиданий этих случайных величин H 0: M 1 = M 2 {\displaystyle H_{0}:~M_{1}=M_{2}} .

Рассмотрим разность выборочных средних Δ = X ¯ 1 − X ¯ 2 {\displaystyle \Delta ={\overline {X}}_{1}-{\overline {X}}_{2}} . Очевидно, если нулевая гипотеза выполнена E (Δ) = M 1 − M 2 = 0 {\displaystyle E(\Delta)=M_{1}-M_{2}=0} . Дисперсия этой разности равна исходя из независимости выборок: V (Δ) = σ 1 2 n 1 + σ 2 2 n 2 {\displaystyle V(\Delta)={\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}} . Тогда используя несмещенную оценку дисперсии s 2 = ∑ t = 1 n (X t − X ¯) 2 n − 1 {\displaystyle s^{2}={\frac {\sum _{t=1}^{n}(X_{t}-{\overline {X}})^{2}}{n-1}}} получаем несмещенную оценку дисперсии разности выборочных средних: s Δ 2 = s 1 2 n 1 + s 2 2 n 2 {\displaystyle s_{\Delta }^{2}={\frac {s_{1}^{2}}{n_{1}}}+{\frac {s_{2}^{2}}{n_{2}}}} . Следовательно, t-статистика для проверки нулевой гипотезы равна

T = X ¯ 1 − X ¯ 2 s 1 2 n 1 + s 2 2 n 2 {\displaystyle t={\frac {{\overline {X}}_{1}-{\overline {X}}_{2}}{\sqrt {{\frac {s_{1}^{2}}{n_{1}}}+{\frac {s_{2}^{2}}{n_{2}}}}}}}

Эта статистика при справедливости нулевой гипотезы имеет распределение t (d f) {\displaystyle t(df)} , где d f = (s 1 2 / n 1 + s 2 2 / n 2) 2 (s 1 2 / n 1) 2 / (n 1 − 1) + (s 2 2 / n 2) 2 / (n 2 − 1) {\displaystyle df={\frac {(s_{1}^{2}/n_{1}+s_{2}^{2}/n_{2})^{2}}{(s_{1}^{2}/n_{1})^{2}/(n_{1}-1)+(s_{2}^{2}/n_{2})^{2}/(n_{2}-1)}}}

Случай одинаковой дисперсии

В случае, если дисперсии выборок предполагаются одинаковыми, то

V (Δ) = σ 2 (1 n 1 + 1 n 2) {\displaystyle V(\Delta)=\sigma ^{2}\left({\frac {1}{n_{1}}}+{\frac {1}{n_{2}}}\right)}

Тогда t-статистика равна:

T = X ¯ 1 − X ¯ 2 s X 1 n 1 + 1 n 2 , s X = (n 1 − 1) s 1 2 + (n 2 − 1) s 2 2 n 1 + n 2 − 2 {\displaystyle t={\frac {{\overline {X}}_{1}-{\overline {X}}_{2}}{s_{X}{\sqrt {{\frac {1}{n_{1}}}+{\frac {1}{n_{2}}}}}}}~,~~s_{X}={\sqrt {\frac {(n_{1}-1)s_{1}^{2}+(n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2}}}}

Эта статистика имеет распределение t (n 1 + n 2 − 2) {\displaystyle t(n_{1}+n_{2}-2)}

Двухвыборочный t-критерий для зависимых выборок

Для вычисления эмпирического значения t {\displaystyle t} -критерия в ситуации проверки гипотезы о различиях между двумя зависимыми выборками (например, двумя пробами одного и того же теста с временным интервалом) применяется следующая формула:

T = M d s d / n {\displaystyle t={\frac {M_{d}}{s_{d}/{\sqrt {n}}}}}

где M d {\displaystyle M_{d}} - средняя разность значений, s d {\displaystyle s_{d}} - стандартное отклонение разностей, а n - количество наблюдений

Эта статистика имеет распределение t (n − 1) {\displaystyle t(n-1)} .

Проверка линейного ограничения на параметры линейной регрессии

С помощью t-теста можно также проверить произвольное (одно) линейное ограничение на параметры линейной регрессии, оцененной обычным методом наименьших квадратов. Пусть необходимо проверить гипотезу H 0: c T b = a {\displaystyle H_{0}:c^{T}b=a} . Очевидно, при выполнении нулевой гипотезы E (c T b ^ − a) = c T E (b ^) − a = 0 {\displaystyle E(c^{T}{\hat {b}}-a)=c^{T}E({\hat {b}})-a=0} . Здесь использовано свойство несмещенности МНК-оценок параметров модели E (b ^) = b {\displaystyle E({\hat {b}})=b} . Кроме того, V (c T b ^ − a) = c T V (b ^) c = σ 2 c T (X T X) − 1 c {\displaystyle V(c^{T}{\hat {b}}-a)=c^{T}V({\hat {b}})c=\sigma ^{2}c^{T}(X^{T}X)^{-1}c} . Используя вместо неизвестной дисперсии её несмещенную оценку s 2 = E S S / (n − k) {\displaystyle s^{2}=ESS/(n-k)} получаем следующую t-статистику:

T = c T b ^ − a s c T (X T X) − 1 c {\displaystyle t={\frac {c^{T}{\hat {b}}-a}{s{\sqrt {c^{T}(X^{T}X)^{-1}c}}}}}

Эта статистика при выполнении нулевой гипотезы имеет распределение t (n − k) {\displaystyle t(n-k)} , поэтому если значение статистики выше критического, то нулевая гипотеза о линейном ограничении отклоняется.

Проверка гипотез о коэффициенте линейной регрессии

Частным случаем линейного ограничения является проверка гипотезы о равенстве коэффициента b j {\displaystyle b_{j}} регрессии некоторому значению a {\displaystyle a} . В этом случае соответстующая t-статистика равна:

T = b ^ j − a s b ^ j {\displaystyle t={\frac {{\hat {b}}_{j}-a}{s_{{\hat {b}}_{j}}}}}

где s b ^ j {\displaystyle s_{{\hat {b}}_{j}}} - стандартная ошибка оценки коэффициента - квадратный корень из соответствующего диагонального элемента ковариационной матрицы оценок коэффициентов.

При справедливости нулевой гипотезы распределение этой статистики - t (n − k) {\displaystyle t(n-k)} . Если значение статистики по абсолютной величине выше критического значения, то отличие коэффициента от a {\displaystyle a} является статистически значимым (неслучайным), в противном случае - незначимым (случайным, то есть истинный коэффициент вероятно равен или очень близок к предполагаемому значению a {\displaystyle a})

Замечание

Одновыборочный тест для математических ожиданий можно свести к проверке линейного ограничения на параметры линейной регрессии. В одновыборочном тесте это «регрессия» на константу. Поэтому s 2 {\displaystyle s^{2}} регрессии это и есть выборочная оценка дисперсии изучаемой случайной величины, матрица X T X {\displaystyle X^{T}X} равна n {\displaystyle n} , а оценка «коэффициента» модели равна выборочному среднему. Отсюда и получаем выражение для t-статистики, приведенное выше для общего случая.

Аналогично можно показать, что двухвыборочный тест при равенстве дисперсий выборок также сводится к проверке линейных ограничений. В двухвыборочном тесте это «регрессия» на константу и фиктивную переменную, идентифицирующую подвыборку в зависимости от значения (0 или 1): y = a + b D {\displaystyle y=a+bD} . Гипотеза о равенстве математических ожиданий выборок может быть сформулирована как гипотеза о равенстве коэффициента b этой модели нулю. Можно показать, что соответствующая t-статистика для проверки этой гипотезы равна t-статистике, приведенной для двухвыборочного теста.

Также к проверке линейного ограничения можно свести и в случае разных дисперсий. В этом случае дисперсия ошибок модели принимает два значения. Исходя из этого можно также получить t-статистику, аналогичную приведенной для двухвыборочного теста.

Непараметрические аналоги

Аналогом двухвыборочного критерия для независимых выборок является U-критерий Манна - Уитни. Для ситуации с зависимыми выборками аналогами являются критерий знаков и T-критерий Вилкоксона

Литература

Student. The probable error of a mean. // Biometrika. 1908. № 6 (1). P. 1-25.

Ссылки

О критериях проверки гипотез об однородности средних на сайте Новосибирского государственного технического университета