Механические колебания. Свободные и вынужденные колебания

Общие свойства всех колебательных систем:

    Наличие положения устойчивого равновесия.

    Наличие силы, возвращающей систему в положение равновесия.

Характеристики колебательного движения:

    Амплитуда - наибольшее (по модулю) отклонение тела от положения равновесия.

    Период - промежуток времени, в течение которого тело совершает одно полное колебание.

    Частота - число колебаний в единицу времени.

    Фаза (разность фаз)

Возмущения, распространяющиеся в пространстве, удаляясь от места их возникновения, называются волнами .

Необходимым условием возникновения волны является появление в момент возникновения возмущения препятствующих ему сил, например сил упругости.

Виды волн:

    Продольная - волна, в которой колебания происходят вдоль направления распространения волны

    Поперечная - волна, в которой колебания происходят перпендикулярно направлению их распространения.

Характеристики волны:

    Длина волны - расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах.

    Скорость волны - величина численно равная расстоянию, которое за единицу времени проходит любая точка волны.

Звуковые волны - это продольные упругие волны. Ухо человека воспринимает в виде звука колебания с частотой от 20 Гц до 20000 Гц.

Источник звука - тело, колеблющееся со звуковой частотой.

Приемник звука - тело способное воспринимать звуковые колебания.

Скорость звука - расстояние, на которое распространяется звуковая волна за 1 секунду.

Скорость звука зависит от:

  1. Температуры.

Характеристики звука:

  1. Высота тона

    Амплитуда

    Громкость. Зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук.

Билет №9. Модели строения газов, жидкостей и твердых тел. Тепловое движение атомов и молекул. Броуновское движение и диффузия. Взаимодействие частиц вещества

Молекулы газа, двигаясь во всех направлениях, почти не притягиваются друг к другу и заполняют весь сосуд. В газах расстояние между молекулами намного больше размеров самих молекул. Поскольку в среднем расстояния между молекулами в десятки раз больше размера молекул, то они слабо притягиваются друг к другу. Поэтому газы не имеют собственной формы и постоянного объема.

Молекулы жидкости не расходятся на большие расстояния, и жидкость в обычных условиях сохраняет свой объем. Молекулы жидкости расположены близко друг к другу. Расстояния между каждыми двумя молекулами меньше размеров молекул, поэтому притяжение между ними становится значительным.

В твердых телах притяжение между молекулами (атомами) еще больше, чем у жидкостей. Поэтому в обычных условиях твердые тела сохраняют свою форму и объем. В твердых телах молекулы (атомы) расположены в определенном порядке. Это лед, соль, металлы и др. Такие тела называются кристаллами. Молекулы или атомы твердых тел колеблются около определенной точки и не могут далеко переместиться от нее. Твердое тело потому сохраняет не только объем, но и форму.

Т.к. со скоростью движения молекул связана его t, то хаотическое движение молекул, из которых состоят тела, называют тепловым движением . Тепловое движение отличается от механического тем, что в нем участвует множество молекул и каждая движется беспорядочно.

Броуновское движение – это беспорядочное движение малых частиц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды. Открыто и впервые исследовано в 1827 г. английским ботаником Р. Брауном как движение цветочной пыльцы в воде, видимое при сильном увеличении. Броуновское движение не прекращается.

Явление, при котором происходит взаимное проникновение молекул одного вещества между молекулами другого, называют диффузией .

Между молекулами вещества существует взаимное притяжение. Между молекулами вещества в то же время существует отталкивание.

На расстояниях, сравнимых с размерами самих молекул, заметнее проявляется притяжение, а при дальнейшем сближении отталкивание.

Билет № 10. Тепловое равновесие. Температура. Измерение температуры. Связь температуры со скоростью хаотического движения частиц

Две системы находятся в состоянии теплового равновесия, если при контакте через диатермическую перегородку параметры состояния обеих систем не изменяются. Диатермическая перегородка совершенно не препятствует тепловому взаимодействию систем. При тепловом контакте две системы приходят в состояние теплового равновесия.

Температура - физическая величина, примерно характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.

Температура - физическая величина, характеризующая степень нагрева тела.

Температура измеряется с помощью термометров. Основные единицы измерения температуры - это Цельсий, Фаренгейт и Кельвин

Термометр - устройство, используемое для измерения температуры данного тела путем сравнения с опорными значениями, условно выбранными за точки отсчета и позволяющими установить шкалу измерений. При этом в разных термометрах используются разные связи между температурой и каким-то наблюдаемым свойством прибора, которое можно считать линейно зависящим от температуры.

При увеличении температуры средняя скорость движения частиц увеличивается.

При уменьшении температуры средняя скорость движения частиц уменьшается.

Билет №11. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Закон сохранения энергии в тепловых процессах

Энергию движения и взаимодействия частиц, из которых состоит тело, называют внутренней энергией тела .

Внутренняя энергия тела не зависит ни от механического движения тела, ни от положения этого тела относительно других тел.

Внутреннюю энергию тела можно изменить двумя способами: совершением механической работы или теплопередачей.

теплопередачей .

При повышении температуры внутренняя энергия тела увеличивается. С понижением температуры внутренняя энергия тела уменьшается. Внутренняя энергия тела увеличивается при совершении над ним работы.

Механическая и внутренняя энергия могут переходить от одного тела к другому.

Этот вывод справедлив для всех тепловых процессов. При теплопередаче, например, тело более нагретое отдает энергию, а тело менее нагретое получает энергию.

При переходе энергии от одного тела к другому или при превращении одного вида энергии в другой энергия сохраняется.

Если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается настолько, насколько уменьшается внутренняя энергия остывающих тел.

Билет № 12. Виды теплопередачи: теплопроводность, конвекция, излучение. Примеры теплопередачи в природе и технике

Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплопередачей .

Перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц называется теплопроводностью .

При конвекции энергия переносится самими струями газа или жидкости.

Излучение - процесс передачи теплоты путем лучеиспускания.

Передача энергии излучением отличается от других видов теплопередачи тем, что она может осуществляться в полном вакууме.

Примеры теплопередачи в природе и технике:

    Ветры. Все ветры в атмосфере представляют собой конвекционные потоки огромного масштаба.

Конвекцией объясняются, например, ветры бризы, возникающие на берегах морей. В летние дни суша прогревается солнцем быстрее, чем вода, поэтому и воздух над сушей нагревается больше, чем над водой, его плотность уменьшается и давление становится меньше давления более холодного воздуха над морем. В результате, как в сообщающихся сосудах, холодный воздух по низу с моря перемещается к берегу - дует ветер. Это и есть дневной бриз. Ночью вода охлаждается медленнее, чем суша, и над сушей воздух становится более холодным, чем над водой. Образуется ночной бриз - движение холодного воздуха от суши к морю.

    Тяга. Мы знаем, что без притока свежего воздуха горение топлива невозможно. Если в топку, в печь, в трубу самовара не будет поступать воздух, то горение топлива прекратится. Обычно используют естественный приток воздуха - тягу. Для создания тяги над топкой, например в котельных установках фабрик, заводов, электростанций, устанавливают трубу. При горении топлива воздух в ней нагревается. Значит, давление воздуха, находящегося в топке и трубе, становится меньше давления наружного воздуха. Вследствие разницы давлений холодный воздух поступает в топку, а теплый поднимается вверх - образуется тяга.

Чем выше труба, сооруженная над топкой, тем больше разница давлений наружного воздуха и воздуха в трубе. Поэтому тяга усиливается при увеличении высоты трубы.

    Отопление и охлаждение жилых помещений. Жители стран, расположенных в умеренных и холодных поясах Земли, вынуждены обогревать свое жилище. В странах, расположенных в тропических и субтропических поясах, температура воздуха даже в январе достигает + 20 и +30 о С. Здесь применяют устройства, охлаждающие воздух в помещениях. И нагревание, и охлаждение воздуха в помещениях основано на конвекции.

Охлаждающие устройства целесообразно располагать наверху, ближе к потолку, чтобы осуществлялась естественная конвекция. Ведь холодный воздух имеет плотность большую, чем теплый, и поэтому будет опускаться.

Обогревательные приборы располагают внизу. Во многих современных больших домах устраивают водяное отопление. Циркуляция воды в нем и прогревание воздуха в помещении происходят за счет конвекции.

Если установка для обогревания здания находится в нем самом, то в подвальном этаже устанавливают котел, в котором нагревают воду. По вертикальной трубе, отходящей от котла, горячая вода поднимается в бак, который обычно помещают на чердаке дома. От бака проводят систему распределительных труб, по которым вода проходит в радиаторы, устанавливаемые на всех этажах, она отдает им свое тепло и возвращается в котел, где снова подогревается. Так происходит естественная циркуляция воды - конвекция.

Колебательные движения широко распространены в окружающей нас жизни. Примерами колебаний могут служить: движение иглы швейной машины, качелей, маятника часов, крыльев насекомых во время полета и многих других тел.

В движении этих тел можно найти много различий. Например, качели движутся криволинейно, а игла швейной машины - прямолинейно; маятник часов колеблется с большим размахом, чем крылья стрекозы. За одно и то же время одни тела могут совершать большее число колебаний, чем другие.
Но при всём разнообразии этих движений у них есть важная общая черта: через определённый промежуток времени движение любого тела повторяется.

Действительно, если шарик отвести от положения равновесия и отпустить, то он, пройдя через положение равновесия, отклонится в противоположную сторону, остановится, а затем вернётся к месту начала движения. За этим колебанием последует второе, третье и т. д., похожие на первое.

Промежуток времени, через который движение повторяется, называется периодом колебаний.

Поэтому говорят, что колебательное движение периодично.

В движении колеблющихся тел кроме периодичности есть ещё одна общая черта.

Обрати внимание!

За промежуток времени, равный периоду колебаний, любое тело дважды проходит через положение равновесия (двигаясь в противоположных направлениях).

Повторяющиеся через равные промежутки времени движения, при которых тело многократно и в разных направлениях проходит положение равновесия, называются механическими колебаниями.

Под действием сил, возвращающих тело в положение равновесия, тело может совершать колебания как бы само по себе. Первоначально эти силы возникают благодаря совершению над телом некоторой работы (растяжению пружины, поднятию на высоту и т.п.), что приводит к сообщению телу некоторого запаса энергии. За счёт этой энергии и происходят колебания.

Пример:

Чтобы заставить качели совершать колебательные движения, нужно сначала вывести их из положения равновесия, оттолкнувшись ногами, либо сделать это руками.

Колебания, происходящие благодаря только начальному запасу энергии колеблющегося тела при отсутствии внешних воздействий на него, называются свободными колебаниями.

Пример:

Примером свободных колебаний тела являются колебания груза, подвешенного на пружине. Первоначально выведенный из равновесия внешними силами груз в дальнейшем будет колебаться только за счет внутренних сил системы «груз-пружина» - силы тяжести и силы упругости.

Условия возникновения свободных колебаний в системе:

а) система должна находиться в положении устойчивого равновесия: при отклонении системы от положения равновесия должна возникать сила, стремящаяся вернуть систему в положение равновесия - возвращающая сила;
б) наличие у системы избыточной механической энергии по сравнению с ее энергией в положении равновесия;
в) избыточная энергия, полученная системой при смещении ее из положения равновесия, не должна быть полностью израсходована на преодоления сил трения при возвращении в положение равновесия, т.е. силы трения в системе должны быть достаточно малы.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая получила название колебательной системы.

Системы тел, которые способны совершать свободные колебания, называются колебательными системами.

Одно из основных общих свойств всех колебательных систем заключается в возникновении в них силы, возвращающей систему в положение устойчивого равновесия.

Пример:

В случае колебаний шарика на нити шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити. Их равнодействующая направлена к положению равновесия.

Механические колебания это движения, которые точно или приблизительно повторяются через определенные интервалы времени. (например, колебание ветки на дереве, маятника часов, автомобиля на рессорах и так далее )

Колебания бывают свободными и вынужденными .

Колебания, возникающие в системе под действием внутренних сил, называются свободными . Все свободные колебания затухают. (например: колебание струны, после удара )

Колебания, совершаемые телами под действием внешних периодически изменяющихся сил, называются вынужденными (например: колебание металлической заготовки при работе кузнеца молотом ).

Условия возникновения свободных колебаний :

  • При выведении тела из положения равновесия в системе должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • Силы трения в системе должны быть очень малы (т.е. стремиться к нулю).

Е кин → Е р Е кин →…

На примере колебаний тела на нити видим превращение энергии . В 1 положении наблюдаем равновесие колебательной системы. Скорость и, следовательно, кинетическая энергия тела максимальны. При отклонении маятника от положения равновесия он поднимается на высоту h относительно нулевого уровня, следовательно, в точке А маятник обладает потенциальной энергией Е р . При движении к положению равновесия, к точке О, уменьшается высота до нуля, а скорость груза увеличивается, и в точке О вся потенциальная энергия Е р превратится в кинетическую энергию Е кин . В положении равновесия кинетическая энергия имеет максимальное значение, а потенциальная энергия минимальна. После прохождения положения равновесия по инерции происходит превращение кинетической энергии в потенциальную, скорость маятника уменьшается и при максимальном

ОК-1 Механические колебания

Механические колебания - это движения, которые точно или приблизительно повторяются через определенные интервалы времени.

Вынужденные колебания - это колебания, которые происходят под действием внешней, периодически изменяющейся силы.

Свободные колебания - это колебания, которые возникают в системе под действием внутренних сил, после того как система была выведена из положения устойчивого равновесия.

Колебательные системы

Условия возникновения механических колебаний

1. Наличие положения устойчивого равновесия, при котором равнодействующая равна нулю.

2. Хотя бы одна сила должна зависеть от координат.

3. Наличие в колеблющейся материальной точке избыточной энергии.

4. Если вывести тело из положения равновесия, то равнодействующая не равна нулю.

5. Силы трения в системе малы.

Превращение энергии при колебательном движении

В неустойчивом равновесии имеем: E п →E к →E п →E к →E п.

За полное колебание
.

Выполняется закон сохранения энергии.

Параметры колебательного движения

1
.
Смещениех - отклонение колеблющейся точки от положения равновесия в данный момент времени.

2. Амплитудах 0 - наибольшее смещение от положения равновесия.

3. ПериодТ - время одного полного колебания. Выражается в секундах (с).

4. Частотаν - число полных колебаний за единицу времени. Выражается в герцах (Гц).

,
;
.

Свободные колебания математического маятника

Математический маятник – модель – материальная точка, подвешенная на нерастяжимой невесомой нити.

Запись движения колеблющейся точки как функции времени.

В
ыведем маятник из положения равновесия. Равнодействующая (тангенциальная)F т = –mg sinα , т. е.F т – проекция силы тяжести на касательную к траектории тела. Согласно второму закону динамикиma т =F т. Так как уголα очень мал, тоma т = –mg sinα .

Отсюда a т =g sinα ,sinα =α =s /L ,

.

Следовательно, a ~s в сторону равновесия.

Ускорение а материальной точки математического маятника пропорционально смещению s .

Таким образом, уравнение движения пружинного и математического маятников имеют одинаковый вид: а ~ х .

Период колебания

Пружинный маятник

Предположим, что собственная частота колебаний тела, прикрепленного к пружине,
.

Период свободных колебаний
.

Циклическая частота ω = 2πν .

Следовательно,
.

Получаем , откуда
.

Математический маятник

С
обственная частота математического маятника
.

Циклическая частота
,
.

Следовательно,
.

Законы колебаний математического маятника

1. При небольшой амплитуде колебаний период колебания не зависит от массы маятника и амплитуды колебаний.

2. Период колебания прямо пропорционален корню квадратному из длины маятника и обратно пропорционален корню квадратному из ускорения свободного падения.

Гармонические колебания

П
ростейший вид периодических колебаний, при которых периодические изменения во времени физических величин происходят по закону синуса или косинуса, называют гармоническими колебаниями:

x =x 0 sinωt илиx =x 0 cos(ωt + φ 0),

где х - смещение в любой момент времени;х 0 - амплитуда колебаний;

ωt + φ 0 - фаза колебаний;φ 0 - начальная фаза.

Уравнение x =x 0 cos(ωt + φ 0), описывающее гармонические колебания, является решением дифференциального уравненияx " +ω 2 x = 0.

Дважды продифференцировав это уравнение, получим:

x " = −ω 0 sin(ωt + φ 0),x " = −ω 2 x 0 cos(ωt + φ 0),ω 2 x 0 cos(ωt + φ 0) −ω 2 x 0 cos(ωt + φ 0).

Если какой-либо процесс можно описать уравнением x " +ω 2 x = 0, то совершается гармоническое колебание с циклической частотойω и периодом
.

Таким образом, при гармонических колебаниях скорость и ускорение также изменяются по закону синуса или косинуса .

Так, для скорости v x =x " = (x 0 cosωt )" =x 0 (cosωt )" , т.е.v= −ωx 0 sinωt ,

или v=ωx 0 cos(ωt /2) =v 0 cos(ωt /2), гдеv 0 =x 0 ω - амплитудное значение скорости. Ускорение изменяется по закону:a x =v" x =x " = −(ωx 0 sinωt )" = −ωx 0 (sinωt )" ,

т.е. a = −ω 2 x 0 cosωt =ω 2 x 0 cos(ωt ) =α 0 cos(ωt ), гдеα 0 =ω 2 x 0: - амплитудное значение ускорения.

Преобразование энергии при гармонических колебаниях

Если колебания тела происходят по закону x 0 sin(ωt + φ 0), токинетическая энергия тела равна :

.

Потенциальная энергия тела равна :
.

Так как k = 2 , то
.

За нулевой уровень отсчета потенциальной энергии выбирается положение равновесия тела (х = 0).

Полная механическая энергия системы равна:
.

ОК-3 Кинематика гармонических колебаний


Фаза колебаний φ - физическая величина, которая стоит под знакомsinилиcosи определяет состояние системы в любой момент времени согласно уравнениюх =x 0 cosφ .

Смещение х тела в любой момент времени

x
=x 0 cos(ωt + φ 0), гдеx 0 - амплитуда;φ 0 - начальная фаза колебаний в начальный момент времени (t = 0), определяет положение колеблющейся точки в начальный момент времени.

Скорость и ускорение при гармонических колебаниях

Е
сли тело совершает гармонические колебания по законуx =x 0 cosωt вдоль осиОх , то скорость движения телаv x определяется выражением
.

Более строго, скорость движения тела - производная координаты х по времениt :

v
x =x " (t ) = −sinω =x 0 ω 0 ω cos(ωt /2).

Проекция ускорения: a x =v" x (t ) = −x 0 ω cosωt =x 0 ω 2 cos(ωt ),

v max =ωx 0 ,a max =ω 2 x .

Если φ 0 x = 0, тоφ 0 v =π /2,φ 0 a =π .

Резонанс

Р

езкое возрастание амплитуды вынужденных колебаний тела при совпадении частоты ω F изменения действующей на это тело внешней силы с собственной частотой ω с свободных колебаний данного тела - механический резонанс. Амплитуда возрастает, еслиω F ω с ; становится максимальной приω с =ω F (резонанс).

Возрастание x 0 при резонансе тем больше, чем меньше трение в системе. Кривые1 ,2 ,3 соответствуют слабому, сильному критическому затуханию:F тр3 >F тр2 >F тр1 .

При малом трении резонанс острый, при большом трении тупой. Амплитуда при резонансе равна:
, гдеF max - амплитудное значение внешней силы;μ - коэффициент трения.

Использование резонанса

Раскачивание качелей.

Машины для утрамбовки бетона.

Частотомеры.

Борьба с резонансом

Уменьшить резонанс можно, увеличив силу трения или

На мостах поезда движутся с определенной скоростью.

«Колебания физика» - Найдем разность фаз?? между фазами смещения х и скорости?x. Силы же имеющие иную природу, но удовлетворяющие (1) называются квазиупругими. Т.к. синус и косинус изменяются в пределах от +1 до – 1, Фаза измеряется в радианах. , Или. 1.5 Энергия гармонических колебаний. Разделы оптики: геометрическая, волновая, физиологическая.

«Вынужденные колебания резонанс» - Резонанс моста под действием периодических толчков при прохождении поезда по стыкам рельсов. В радиотехнике. Резонанс весьма часто наблюдается в природе и играет огромную роль в технике. Характер явления Резонанс существенно зависит от свойств колебательной системы. Роль резонанса. В др. случаях резонанс играет положительную роль, например:

«Колебательное движение» - Особенность колебательного движения. Крайнее правое положение. Крайнее левое положение. Маятник часов. V=0 м/с а=max. Механизм колебания. Ветки деревьев. Примеры колебательных движений. Положение равновесия. Игла швейной машинки. Рессоры вагона. Условия возникновения колебаний. Качели. Колебательное движение.

«Урок механические колебания» - II. 1. Колебания 2. Колебательная система. 2. Колебательная система – система тел, способных совершать колебательные движения. Х [м] - смещение. 1. Муниципальное общеобразовательное учреждение – Гимназия №2. Свободные колебания. 3. Основное свойство колебательных систем. Техническая поддержка урока:

«Колебание точки» - Вынужденные колебания. 11. 10. 13. 12. Малое сопротивление. Коэффициент динамичности. 4. Примеры колебаний. 1. Примеры колебаний. Движение является затухающим и апериодичным. Движение = свободные колебания + вынужденные колебания. Лекция 3: прямолинейные колебания материальной точки. 6. Свободные колебания.

«Физический и математический маятник» - Выполнила Юнченко Татьяна. Математический маятник. Презентация