Структура воды: новые экспериментальные данные. Структура воды

Молекула воды Н2О состоит из одного атома кислорода, связанного ковалентной связью с двумя атомами водорода.

В молекуле воды главным действующим лицом является атом кислорода.

Поскольку атомы водорода друг от друга заметно отталкиваются, угол между химическими связями (линиями, соединяющими ядра атомов) водород - кислород не прямой (90°), а немного больше - 104,5°.

Химические связи в молекуле воды – полярные, так как кислород подтягивает к себе отрицательно заряженные электроны, а водород - положительно заряженные электроны. В результате вблизи атома кислорода скапливается избыточный отрицательный заряд, а у атомов водорода - положительный.

Поэтому вся молекула воды является диполем, то есть молекулой с двумя разноименными полюсами. Дипольная структура молекулы воды во многом определяет ее необычные свойства.

Молекула воды – это диамагнетик.

Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - тетраэдр. Таково строение самой молекулы воды.

При изменении состояния молекулы воды длина сторон и угол между ними изменяются в тетраэдре.

Например, если молекула воды находится в парообразном состоянии, то угол, образованный ее сторонами, равняется 104°27". В водном состоянии угол составляет 105°03". И в состоянии льда угол равен 109,5°.

Геометрия и размеры молекулы воды для различных состояний
а - для парообразного состояния
б - для низшего колебательного уровня
в - для уровня, близкого к образованию кристалла льда, когда геометрия молекулы воды соответствует геометрии двух египетских треугольников с соотношением сторон 3: 4: 5
г - для состояния льда.

Если разделить пополам эти углы, то получим углы:
104°27": 2 = 52°13",
105°03": 2 = 52°31",
106°16": 2 = 53°08",
109,5°: 2 = 54°32".

Значит, среди геометрических рисунков молекулы воды и льда находится знаменитый египетский треугольник, в основу построения которого заложены соотношения золотой пропорции - длины сторон относятся как 3:4:5 с углом 53°08".

Молекула воды приобретает строение золотой пропорции на пути, когда вода переходит в лед, и наоборот, когда лед тает. Очевидно, за это состояние и ценится талая вода, когда ее структура в построении имеет пропорции золотого сечения.

Теперь становится понятным, что знаменитый египетский треугольник с соотношением сторон 3:4:5 "взят" из одного из состояний молекулы воды. Сама же геометрия молекулы воды образована двумя египетскими прямоугольными треугольниками, имеющими общий катет равный 3.

Молекула воды, имеющая в основе соотношение золотой пропорции, является физическим проявлением Божественной Природы, которая участвует в создании жизнь. Именно поэтому в земной природе заложена та гармония, которая присуща всему космосу.

И поэтому древние египтяне обожествляли числа 3, 4, 5, а сам треугольник считали священным и старались заложить его свойства, его гармонию в любую конструкцию, дома, пирамиды и даже в разметку полей. Кстати, украинские хаты строились тоже с применением соотношения золотой пропорции.

В пространстве молекула воды занимает некоторый объем, и покрыта электронной оболочкой в виде вуали. Если представить вид гипотетической модели молекулы в плоскости, то она похожа на крылья бабочки, на Х-образную хромосому, в которой записана программа жизни живого существа. И это является показательным фактом того, что сама вода - это обязательный элемент всего живого.

Если представить вид гипотетической модели молекулы воды в объеме, то она передает форму треугольной пирамиды, у которой имеется 4 грани, а у каждой грани по 3 ребра. В геометрии треугольная пирамида называется тетраэдром. Такое строение свойственно кристаллам.

Таким образом, молекула воды образует прочную уголковую структуру, которую она сохраняет даже, когда находится в парообразном состоянии, на грани перехода в лед, и когда превращается в лед.

Если "скелет" молекулы воды так устойчив, то и его энергетическая "пирамида" - тетраэдр тоже стоит непоколебимо.

Такие структурные свойства молекулы воды в различных условиях объясняются прочными связями между двумя атомами водорода и одним атомом кислорода. Эта связь примерно в 25 раз сильнее, чем связь между соседними молекулами воды. Поэтому легче отделить одну молекулу воды от другой, например, при нагревании, чем разрушить саму молекулу воды.

За счет ориентационных, индукционных, дисперсионных взаимодействий (сил Ван-дер-Ваальса) и водородных связей между атомами водорода и кислорода соседних молекул молекулы воды способны образовывать как случайные ассоциаты, т.е. не имеющие упорядоченной структуры, так и кластеры – ассоциаты, имеющие определенную структуру.

Согласно статистическим данным, в обычной воде находится случайных ассоциатов - 60% (деструктурированная вода) и кластеров - 40% (структурированная вода).

В результате исследований, проведенных российским ученым С. В. Зениным, были обнаружены стабильные долгоживущие кластеры воды.

Зенин установил, что молекулы воды первоначально образуют додекаэдр. Четыре додекаэдра соединяясь, образует основной структурный элемент воды - кластер, состоящий из 57 молекул воды.

В кластере додекаэдры имеют общие грани, а их центры образуют правильный тетраэдр. Это объёмное соединение молекул воды, в том числе гексамеров, которое имеет положительные и отрицательные полюса.

Водородные мостики позволяют молекулам воды объединяться самыми различными способами. Благодаря этому в воде наблюдается бесконечное разнообразие кластеров.

Кластеры могут взаимодействовать друг с другом за счет свободных водородных связей, что приводит к появлению структур второго порядка в виде шестигранников. Они состоят из 912 молекул воды, которые практически не способны к взаимодействию. Время существования такой структуры весьма велико.

Эту структуру, похожую на маленький острый кристаллик льда из 6 ромбических граней, С.В. Зенин назвал "основным структурным элементом воды”. Многочисленные эксперименты подтвердили; в воде - мириады таких кристалликов.

Эти кристаллики льда почти не взаимодействуют друг с другом, поэтому не образуют более сложных устойчивых конструкций и легко скользят гранями относительно друг друга, создавая текучесть. В этом смысле вода напоминает переохлажденный раствор, который никак не может кристаллизоваться.

Состав воды можно выяснить с помощью реакции разложения электрическим током. Образуется два объема водорода на один объем кислорода (объем газа пропорционален количеству вещества):

2H 2 O = 2H 2 + O 2

Вода состоит из молекул. Каждая молекула содержит два атома водорода, соединенные ковалентными связями с одним атомом кислорода. Угол между связями около 105°:
O - H
H

Поскольку кислород является более электроотрицательным элементом (сильным окислителем), общая электронная пара ковалентной связи смещается к атому кислорода, на нем образуется частичный отрицательный заряд δ−, на атомах водорода - частичный положительный δ+. Соседние молекулы притягиваются друг к другу противоположными зарядами - это обуславливает сравнительно высокую температуру кипения воды.

Вода при комнатной температуре - бесцветная прозрачная жидкость. Температура плавления 0º C, температура кипения при атмосферном давлении - 100° С. Чистая вода не проводит электрический ток.

Интересной особенностью воды является то, что она имеет наибольшую плотность 1 г/см 3 при температуре около 4° С . При дальнейшем понижении температуры плотность воды снижается. Поэтому с наступлением зимы верхние замерзающие слои воды становятся легче и не погружаются вниз. Лед образуется на поверхности. Промерзания водоема до дна обычно не происходит (к тому же лед тоже имеет плотность меньше воды и плавает на поверхности).

Химические свойства :

К основным загрязнителям природной воды относятся сточные воды промышленных предприятий, содержащие соединения ртути, мышьяка и других токсичных элементов. Стоки животноводческих комплексов, городов могут содержать отходы, вызывающие бурное развитие бактерий. Большую опасность для природных водоемов представляет неправильное хранение (не обеспечивающее защиту от атмосферных осадков) или применение удобрений и ядохимикатов, смываемых в водоемы. Транспорт, особенно водный, загрязняет водоемы нефтепродуктами и бытовым мусором, выбрасываемым недобросовестными людьми прямо в воду.

Для охраны вод необходимо вводить замкнутое водоснабжение промышленных предприятий, комплексную переработку сырья и отходов, строительство очистных сооружений, экологическое воспитание населения.

* Для электролиза воды используются растворы солей

2. Опыт. Распознавание соли угольной кислоты среди трех предложенных солей.

Качественной реакцией на карбонаты служит взаимодействие с кислотами, сопровождающееся бурным выделением углекислого газа:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2

или, в ионном виде:

CO 3 2− + 2H + = H 2 O + CO 2

Доказать, что выделяется именно оксид углерода (IV), можно, пропуская его через раствор известковой воды, что вызывает её помутнение:

CO 2 + Ca(OH) 2 = CaCO 3 ↓ + H 2 O

Чтобы распознать соль угольной кислоты, добавляем во все три пробирки немного кислоты (чтобы не вылилась через край при «вскипании»). Где будет выделяться бесцветный газ без запаха, там находится карбонат.

Вода может находиться в трех агрегатных состояниях -- газообразном, жидком и твердом. В каждом из этих состояний структура воды неодинакова. В зависимости от состава находящихся в ней веществ вода приобретает новые свойства. Твердое состояние воды также бывает, по крайней мере, двух типов: кристаллическое -- лед и некристаллическое -- стеклообразное, аморфное (состояние витрификации). При мгновенном замораживании с помощью, например, жидкого азота молекулы не успевают построиться в кристаллическую решетку, и вода приобретает твердое стеклообразное состояние. Именно это свойство воды позволяет замораживать без повреждения живые организмы, такие, как одноклеточные водоросли, листочки мха Мпіuт, состоящие из двух слоев клеток. Замораживание же с образованием кристаллической воды приводит к повреждению клеток.

Для кристаллического состояния воды характерно большое разнообразие форм. Давно замечено, что кристаллические структуры воды напоминают радиолярии, листья папоротника, цисты. По этому поводу А. А. Любищев высказал предположение, что законы кристаллизации в чем-то сходны с законами образования живых структур.

Физические свойства воды. Вода -- самое аномальное вещество, хотя принята за эталон меры плотности и объема для других веществ.

Плотность. Все вещества увеличивают объём при нагревании, уменьшая при этом плотность. Однако при давлении 0,1013 МПа (1 атм.) у воды в интервале от 0 до 4 0 С при увеличении температуры объём уменьшается и максимальная плотность наблюдается (при этой температуре 1 см 3 воды имеем массу 1г). При замерзании объем воды резко возрастает на 11%, а при таянии льда при 0°С так же резко уменьшается. С увеличением давления температура замерзания воды понижается через каждые 13,17 МПа (130 атм.) на 1 0 С. Поэтому на больших глубинах при минусовых температурах вода в океане не замерзает. С увеличением температуры до 100 0 С плотность жидкой воды понижается на 4% (при 4°С плотность ее равна 1).

Точки кипения и замерзания (плавления). При давлении 0,1013 МПа (1 атм.) точки замерзания и кипения воды находятся при 0°С и 100°С, что резко отличает Н20 от соединений водорода с элементами VI группы периодической системы Менделеева. В ряду Н2Те, H2Se, H2S и т.д. с увеличением относительной молекулярной массы точки кипения и замерзания этих веществ повышаются. При соблюдении этого правила вода должна была бы иметь точки замерзания между -- 90 и -- 120°С, а кипения -- между 75 и 100 °С. Температура кипения воды возрастает с увеличением давления, а температура замерзания (плавления) -- падает (прил.1).

Теплота плавления. Скрытая теплота плавления льда очень высока -- около 335 Дж/г (для железа -- 25, для серы -- 40). Это свойство выражается, например, в том, что лед при нормальном давлении может иметь температуру от -- 1 до -- 7°С. Скрытая теплота парообразования воды (2,3 кДж/г) почти в 7 раз выше скрытой теплоты плавления.

Теплоемкость. Величина теплоемкости воды (т.е. количество теплоты, необходимое для повышения температуры на 1 °С) в 5 --30 раз выше, чем у других веществ. Лишь водород и аммиак обладают большей теплоемкостью. Кроме того, лишь у жидкой воды и ртути удельная теплоемкость с повышением температуры от 0 до 35°С падает (затем начинает возрастать). Удельная теплоемкость воды при 16°С условно принята за единицу, служа эталоном для других веществ. Поскольку теплоемкость песка в 5 раз меньше, чем у жидкой воды, то при одинаковом нагреве солнцем вода в водоеме нагревается в 5 раз слабее, чем песок на берегу, но во столько же раз дольше сохраняет теплоту. Высокая теплоемкость воды защищает растения от резкого повышения температуры при высокой температуре воздуха, а высокая теплота парообразования участвует в терморегуляции у растений.

Высокие температуры плавления и кипения, высокая теплоемкость свидетельствуют о сильном притяжении между соседними молекулами, вследствие чего жидкая вода обладает большим внутренним сцеплением.

Вода как растворитель. Полярность молекулы воды обусловливает ее свойство растворять вещества лучше, чем другие жидкости. Растворение кристаллов неорганических солей осуществляется благодаря гидратации входящих в их состав ионов. Хорошо растворяются в воде органические вещества, с карбоксильными, гидроксильными. Карбонильными и с другими группами, которых вода образует водородные связи. (прил. 1)

Вода в растении находится как в свободном, так и в связанном состоянии (прил.2). Свободная вода - подвижна, она имеет практически все физико-химические свойства чистой воды, хорошо проникает через клеточные мембраны. Существуют специальные мембранные белки, образующие внутри мембраны каналы, проницаемые для воды (аквапорины). Свободная вода вступает в различные биохимические реакции, испаряется в процессе транспирации, замерзает при низких температурах.

Связанная вода - имеет измененные физические свойства главным образом в результате взаимодействия с неводными компонентами. Условно принимают под связанной водой ту, которая не замерзает при понижении температуры до - 10°С.

Связанная вода в растениях бывает:

1) Осмотически - связанная

2) Коллоидно-связанная

3) Капиллярно-связанная

Осмотически-связанная вода - связана с ионами или низкомолекулярными веществами. Вода гидратирует растворенные вещества - ионы, молекулы. Вода электростатически связывается и образует мономолекулярный слой первичной гидратации. Вакуолярный сок содержит сахара, органические кислоты и их соли, неорганические катионы и анионы. Эти вещества удерживают воду осмотически.

Коллоидно-связанная вода - включает воду, которая находится внутри коллоидной системы и воду, которая находится на поверхности коллоидов и между ними, а также иммобилизованную воду. Иммобилизация представляет собой механический захват воды при конформационных изменениях макромолекул или их комплексов, при этом вода оказывается заключенной в замкнутом пространстве макромолекулы. Значительное количество коллоидно-связанной воды находится на поверхности фибрилл клеточной стенки, а также в биоколлоидах цитоплазмы и матриксе мембранных структур клетки.

Воду, гидратирующую коллоидные частицы (прежде всего белки), называют коллоидно-связанной, а растворенные вещества (минеральные соли, сахара, органические кислоты и др.) - осмотически-связанной. Некоторые исследователи считают, что вся вода в клетке в той или иной степени связана. Физиологи условно понимают под связанной водой ту, которая не замерзает при понижении температуры до-10 °С. Важно отметить, что всякое связывание молекул воды (добавление растворенных веществ, гидрофобные взаимодействия и др.) уменьшает их энергию. Именно это лежит в основе снижения водного потенциала клетки по сравнению с чистой водой.

Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93-95%, кукурузы -- 75-77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80-83%, в стеблях - 87-89%, в корнях -- 73-75%. Содержание воды, равное 6-11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены. Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклетниках. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, вакуоли, протоплазме. Вакуоли -- наиболее богатая водой часть клетки, где содержание ее достигает 98%. При наибольшей оводненности содержание воды в протоплазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%.

Формы воды в разных частях растительной клетки также различны. В вакуолярном клеточном соке преобладает вода, удерживаемая сравнительно низкомолекулярными соединениями (осмотически-связанная) и свободная вода. В оболочке растительной клетки вода связана главным образом высокополимерными соединениями (целлюлозой, гемицеллюлозой, пектиновыми веществами), т. е. коллоидно-связанная вода. В самой цитоплазме имеется вода свободная, коллоидно- и осмотически-связанная. Вода, находящаяся на расстоянии до 1 нм от поверхности белковой молекулы, связана прочно и не имеет правильной гексагональной структуры (коллоидно-связанная вода). Кроме того, в протоплазме имеется определенное количество ионов, а, следовательно, часть воды осмотически связана.

Физиологическое значение свободной и связанной воды различно. Большинство исследователей полагает, что интенсивность физиологических процессов, в том числе и темпов роста, зависит в первую очередь от содержания свободной воды. Имеется прямая корреляция между содержанием связанной воды и устойчивостью растений против неблагоприятных внешних условий. Указанные физиологические корреляции наблюдаются не всегда.

Кандидат химических наук Александр Смирнов, профессор МИРЭА.

Воде дана таинственная власть
Быть соком жизни на Земле.

Леонардо да Винчи

Рис. 1. Структура воды при температуре 20оС, размер по горизонтали - 400 мкм. Белые пятна - это эмулоны.

Рис. 2. Структура водных растворов при 20оС: А - дистиллированная вода; Б - дегазированная минеральная вода боржоми; В - спиртовая настойка 70%.

Рис. 3. Эмулоны в бидистиллированной воде при температурах 4оС (А), 20оС (Б), 80оС (В). Размеры снимков 1,5 × 1,5 мм.

Рис. 4. Изменение амплитуды сигналов акустической эмиссии и температуры воды в процессе таяния льда.

Рис. 5. Относительное изменение температуры при нагревании воды.

Подробности для любознательных. Схема опыта. За короткое время из стаканчика с положительным электродом (анодом) через «мостик» утекло 0,5 грамма воды.

«Парящий водяной мостик» длиной около 3 сантиметров.

Наэлектризованная стеклянная палочка искажает форму «мостика» и разбивает его на струйки.

Так могут выглядеть эмулоны, образующие нитевидную структуру «мостика».

Воду принято рассматривать и как практически нейтральный растворитель, в котором протекают биохимические реакции, и как субстанцию, разносящую по телу живых организмов различные вещества. Вместе с тем вода - непременный участник всех физико-химических процессов и, в силу своей огромной важности, самое изучаемое вещество. Изучение свойств воды не раз приводило к неожиданным результатам. Казалось бы, какие неожиданности может таить в себе несложная реакция окисления водорода 2H 2 + O 2 → 2H 2 O? Но работы академика Н. Н. Семёнова показали, что реакция эта - разветвлённая, цепная. Было это более семидесяти лет назад, и про цепную реакцию деления урана ещё не знали. Вода в стакане, реке или озере не просто огромные количества отдельных молекул, а их объединения, надмолекулярные структуры - кластеры. Для описания структуры воды предложен ряд моделей, которые более или менее правильно объясняют только некоторые её свойства, а в отношении других противоречат эксперименту.

теоретически кластеры рассчитывают обычно только для нескольких сотен молекул или для слоёв вблизи межфазной границы. Однако ряд экспериментальных фактов свидетельствует, что в воде могут существовать гигантские, по молекулярным масштабам, структуры (работы члена-корреспондента РАН Е. Е. Фесенко).

В тщательно очищенной дважды дистиллированной воде и некоторых растворах нам удалось методом акустической эмиссии обнаружить и с помощью лазерной интерферометрии визуализировать структурные образования, состоящие из пяти фракций размерами от 1 до 100 мкм. Эксперименты позволили установить, что каждый раствор имеет свою, присущую только ему структуру (рис. 1, 2).

Надмолекулярные комплексы образованы сотнями тысяч молекул воды, сгруппированных вокруг ионов водорода и гидроксила в виде ионных пар. Для этих надмолекулярных комплексов мы предлагаем название «эмулоны», чтобы подчеркнуть их сходство с частицами, образующими эмульсию. Комплексы состоят из отдельных фракций размерами от 1 до 100 мкм, причём фракций, имеющих размеры 30, 70 и 100 мкм, значительно больше остальных.

Содержание отдельных фракций эмулонов зависит от концентрации ионов водорода, температуры, концентрации раствора и предыстории образца (рис. 3). В бидистиллированной воде при 4 о С комплексы плотно упакованы и образуют текстуру, напоминающую паркет. Как известно, вода при этой температуре имеет максимальную плотность. При повышении температуры до 20 о С в структуре воды происходят существенные изменения: количество свободных эмулонов становится наибольшим. При дальнейшем нагреве они постепенно разрушаются, число их уменьшается, и этот процесс в основном заканчивается при 75 о С, когда скорость звука в воде достигает максимума.

За счёт дальнодействия электростатических сил эмулоны в воде образуют довольно стабильную сверхрешётку, которая, однако, чутко реагирует на электромагнитные, акустические, тепловые и другие внешние воздействия.

Обнаруженные надмолекулярные комплексы непротиворечиво включают в себя все ранее полученные сведения об организации воды в нанообъёмах и позволяют объяснить многие экспериментальные факты, которые не имели стройного, логичного обоснования. К ним относится, например, образование «парящего водяного мостика», описанного в ряде работ.

Суть эксперимента заключается в том, что если поставить рядом два небольших химических стакана с водой, опустить в них платиновые электроды под постоянным напряжением 15-30 кВ, то между сосудами образуется водяная перемычка диаметром 3 мм и длиной до 25 мм. «Мостик» парит длительное время, имеет слоистую структуру, и по нему происходит перенос воды от анода к катоду. Этот феномен и все его свойства - следствие наличия в воде эмулонов, которые, по-видимому, обладают дипольным моментом. Можно предсказать и ещё одно свойство явления: при температуре воды выше 75 о С «мостик» не возникнет.

Легко объясняются и аномальные свойства талой воды. Как отмечалось в литературе, многие свойства талой воды - плотность, вязкость, электропроводность, показатель преломления, растворяющая способность и другие - отличаются от равновесных параметров. Сведéние этих эффектов к удалению из воды дейтерия в результате фазового перехода (температура плавления «тяжёлого льда» D 2 O 3,82 о С) несостоятельно, поскольку концентрация дейтерия крайне незначительна - один атом дейтерия на 5-7 тыс. атомов водорода.

Изучение плавления льда методом акустической эмиссии позволило впервые установить, что после полного расплавления льда талая вода, находящаяся в метастабильном состоянии, становится источником акустических импульсов, что служит экспериментальным подтверждением образования в воде надмолекулярных комплексов (рис. 4).

Эксперименты показывают, что талая вода на протяжении почти 17 часов может находиться в активном метастабильном состоянии (после плавления льда его микрокристаллики сохраняются только доли секунды и совсем не определяют свойства талой воды). Это загадочное явление объясняется тем, что при разрушении гексагональной кристаллической решётки льда резко меняется структура вещества. Кристаллы льда разрушаются быстрее, чем перестраивается в устойчивое равновесное состояние образовавшаяся из него вода.

Уникальность фазового перехода лёд↔вода заключается в том, что в талой воде концентрация ионов водорода H + и гидроксила OH – непродолжительное время сохраняется неравновесной, какой она была во льду, то есть в тысячу раз меньшей, чем в обычной воде. Через некоторое время концентрация ионов H + и OH – в воде принимает своё равновесное значение. Поскольку ионы водорода и гидроксила играют решающую роль в формировании надмолекулярных комплексов воды (эмулонов), вода на некоторое время остаётся в метастабильном состоянии. Реакция её диссоциации H 2 O → H + + OH – требует значительной затраты энергии и протекает очень медленно. Константа скорости этой реакции составляет всего 2,5∙10 –5 c –1 при 20 о С. Поэтому время возвращения талой воды в равновесное состояние теоретически должно составлять 10-17 часов, что и наблюдается на практике. Исследования динамики изменения концентрации ионов водорода в талой воде во времени подтверждают это. Необычные свойства талой воды служат причиной разговоров о «памяти» воды. Но под «памятью» воды следует понимать зависимость её свойств от предыстории и ничего больше. Можно разными способами - замораживанием, нагреванием, кипячением, обработкой ультразвуком, воздействием различных полей и др. - перевести воду в метастабильное состояние, но оно будет неустойчивым, недолго сохраняющим свои свойства. Оптическим методом мы обнаружили в талой воде присутствие лишь одной фракции надмолекулярных образований с размерами 1-3 мкм. Возможно, что пониженная вязкость и более редкая пространственная сетка из эмулонов в талой воде увеличивают растворяющую способность и скорость диффузии.

Реальность существования эмулонов подтверждает классический метод термического анализа (рис. 5). На графике наблюдаются чётко выраженные пики, свидетельствующие о структурных перестройках в воде. Наиболее значимые соответствуют 36 о C - температуре минимальной теплоёмкости, 63 о C - температуре минимальной сжимаемости, и особенно характерен пик при 75 о C - температуре максимальной скорости звука в воде. Их можно трактовать как своеобразные фазовые переходы, связанные с разрушением эмулонов. Это позволяет сделать вывод: жидкая вода - очень своеобразная дисперсная система, включающая как минимум пять структурных образований с различными свойствами. Каждая структура существует в определённом, характерном для неё температурном интервале. Превышение температуры над пороговым уровнем, критичным для данной структуры, приводит к её распаду.

Литература

Зацепина Г. Л. Физические свойства и структура воды. - М.: Изд-во Московского университета. - 1998. - 185 с.

Кузнецов Д. М., Гапонов В. Л., Смирнов А. Н. О возможности исследования кинетики фазовых переходов в жидкой среде методом акустической эмиссии // Инженерная физика, 2008, № 1, с. 16-20.

Кузнецов Д. М., Смирнов А. Н., Сыроешкин А. В. Акустическая эмиссия при фазовых превращениях в водной среде // Российский химический журнал - М.: Рос. хим. об-во им. Д. И. Менделеева, 2008, т. 52, № 1, с. 114-121.

Смирнов А. Н. Структура воды: новые экспериментальные данные. // Наука и технологии в промышленности, 2010, № 4, с. 41-45.

Смирнов А. Н. Акустическая эмиссия при протекании химической реакции и физико-химических процессов // Российский химический журнал. - М.: Рос. хим. об-во им. Д. И. Менделеева, 2001, т. 45, с. 29-34.

Смирнов А. Н., Сыроешкин А. В. Супранадмолекулярные комплексы воды // Российский химический журнал. - М.: Рос. хим. об-во им. Д. И. Менделеева, 2004, т. 48, № 2, с. 125-135.

Подробности для любознательных

Как возникает «мостик»

Образование «водяного мостика» описано в работах нидерландского физика Элмара Фукса с коллегами.

В две стоящие рядом небольшие ёмкости с водой погружают платиновые электроды и подают на них постоянное напряжение 15-20 кВ. На фотографиях из отчётливо видно, что вначале в анодном стакане, а затем и в катодном на поверхности воды возникают возвышения, которые сливаются, образуя между ёмкостями водяную перемычку круглого сечения диаметром 2-4 мм. После этого стаканы можно отодвинуть один от другого на 20-25 мм. Перемычка существует довольно долго, образуя «парящий водяной мостик». Вдоль «мостика» перетекает вода. Концы «мостика» разноимённо заряжены, поэтому вода в ёмкостях приобретает различные значения рН: 9 и 4. «Мостик» состоит из тонких струек; при поднесении к нему заряженной стеклянной палочки он расщепляется на несколько рукавов. Высокая техника эксперимента позволила зарегистрировать движение шаровидных образований по поверхности «водяного мостика» .

Вода - самое распространенное соединение в живых системах. Но содержание воды колеблется в широких пределах: от 10% (эмаль зубов), 20% (костная ткань), до 85% (головной мозг человека), в сухих семенах 10-12%, у медузы 95-98%, т.е. весь организм по существу состоит из воды. Потеря 20% воды приводит к гибели клетки или анабиозу.

Свойства воды уникальны, т.е. ни одно другое соединение не обладает ими. Это обусловлено строением ее молекул: один атом кислорода связан прочной ковалентной связью с двумя атомами водорода, т.е. Н 2 О – очень простое соединение. Атомы водорода присоединены к кислороду под углом 104,5 0 .

Рис.1. Строение молекулы воды.

Особенности физических свойств воды связаны со структурой её молекулы и особенностями межмолекулярных взаимодействий. Распределение электронной плотности в молекуле воды таково (рис.1, б, в), что создаются 4 полюса зарядов: 2 положительных, связанных с атомами водорода, и 2 отрицательных, связанных с электронными облаками электронов атома кислорода. Указанные 4 полюса зарядов располагаются в вершинах тетраэдра (рис. 1, г). Благодаря этому молекула воды дипольна, а четыре полюса зарядов позволяют каждой молекуле образовать четыре водородные связи с соседними (такими же) молекулами. В результате образуются кластеры (при мгновенном замораживании они похожи на красивые снежинки, рис.2.).

Рис.2. Образование кластера воды.

Кластеры образуют рабочую «структуру воды». Водородные связи слабые, в 15-20 раз слабее ковалентных. Поэтому одни связи легко рвутся, другие возникают. Вследствие этого молекулы очень подвижны. Любые внешние изменения (температуры, давления и т.д.) меняют эту рабочую структуру. Таким образом, вода обладает высокой чувствительностью и памятью.

Молекулы воды могут присоединяться к молекулам, несущим электронный заряд, в результате образуются гидраты. Если сила притяжения между молекулами воды меньше, чем притяжение воды к молекулам вещества – вещество растворяется.



Свойства и функции воды.

1. Связывает в единую систему всю живую и неживую природу на планете. Вода подвижна, изменчива, но меняется не химический состав молекул, а структура кластера.

2. Вода - универсальный растворитель. Из-за полярности она не имеет в этом себе равных: в воде растворяется больше веществ, чем в каких-либо других жидкостях. Вещества в клетку поступают и выводятся только в растворенном виде.

3. По отношению к воде вещества в клетке делятся на 2 группы:

а) гидрофобные (fobos – страх, ужас): нерастворимы в воде (жиры, полисахариды и др.)

б) гидрофильные (fileon – люблю): растворимы в воде (минеральные соли, кислоты, моносахариды и др.)

Благодаря этому свойству воды (за счет гидрофобных взаимодействий) в клетке собираются:

1) биологические мембраны,

2) белки и ДНК принимают форму спирали.

4. Для воды характерна высокая теплоемкость (т.е. чтобы поднять температуру воды и разорвать водородные связи требуется много энергии). Так температура кипения воды 100 0 С, а у спирта 70 0 С.

5. Высокая теплопроводность. Благодаря этому свойству в клетке и организме поддерживается тепловое равновесие.

6. Вода сама как химическое соединение участвует во многих химических реакциях. Например, реакции гидролиза идут за счет присоединения воды.

7. Является источником О 2 и Н + при фотосинтезе (фотолиз воды).

8. Вода – основная среда для транспорта веществ в клетке (диффузия) и организме (токи крови и лимфы, межтканевой жидкости, содержащими питательные вещества, О 2 и СО 2 , гормоны, вещества, включающие и выключающие работу генов). Это транспортная функция.

9. Обеспечивает объем и упругость клетки: тургорное и осмотическое давление, сохраняет форму клеток и организмов (гидроскелет у круглых и кольчатых червей).

10. Среда для оплодотворения.

11. Среда для жизни водных организмов.

12. Среда для развития зародышей животных (в амнионе).

13. Участвует в образовании смазочных жидкостей в суставах, плевральной полости, околосердечной сумке.

14. Образует слизи, обеспечивающие передвижение веществ по кишечнику, влажную среду на слизистых оболочках (чихание, кашель).

15. Участвует в образовании секретов (слюна, слезы, желчь, сперма и соли в организме).

16. Вода - лимитирующий фактор жизни на нашей планете. Всюду, где есть вода, есть жизнь, где нет воды – там нет жизни.