Оценка существенности параметров линейной регрессии и всего уравнения в целом. Проверка значимости всего уравнения регрессии в целом

После того, как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Проверить значимость уравнения регрессии - значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включённых в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной.

Проверка значимости производится на основе дисперсионного анализа.

Согласно идее дисперсионного анализа, общая сумма квадратов отклонений (СКО) y от среднего значения раскладывается на две части - объясненную и необъясненную:

или, соответственно:

Здесь возможны два крайних случая: когда общая СКО в точности равна остаточной и когда общая СКО равна факторной.

В первом случае фактор х не оказывает влияния на результат, вся дисперсия y обусловлена воздействием прочих факторов, линия регрессии параллельна оси Ох и уравнение должно иметь вид.

Во втором случае прочие факторы не влияют на результат, y связан с x функционально, и остаточная СКО равна нулю.

Однако на практике в правой части присутствуют оба слагаемых. Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации y приходится на объясненную вариацию. Если объясненная СКО будет больше остаточной СКО, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат y. Это равносильно тому, что коэффициент детерминации будет приближаться к единице.

Число степеней свободы (df-degrees of freedom) - это число независимо варьируемых значений признака.

Для общей СКО требуется (n-1) независимых отклонений,

Факторная СКО имеет одну степень свободы, и

Таким образом, можем записать:

Из этого баланса определяем, что = n-2.

Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы: - общая дисперсия, - факторная, - остаточная.

Анализ статистической значимости коэффициентов линейной регрессии

Хотя теоретические значения коэффициентов уравнения линейной зависимости предполагаются постоянными величинами, оценки а и b этих коэффициентов, получаемые в ходе построения уравнения по данным случайной выборки, являются случайными величинами. Если ошибки регрессии имеют нормальное распределение, то оценки коэффициентов также распределены нормально и могут характеризоваться своими средними значениями и дисперсией. Поэтому анализ коэффициентов начинается с расчёта этих характеристик.

Дисперсии коэффициентов рассчитываются по формулам:

Дисперсия коэффициента регрессии:

где - остаточная дисперсия на одну степень свободы.

Дисперсия параметра:

Отсюда стандартная ошибка коэффициента регрессии определяется по формуле:

Стандартная ошибка параметра определяется по формуле:

Они служат для проверки нулевых гипотез о том, что истинное значение коэффициента регрессии b или свободного члена a равно нулю: .

Альтернативная гипотеза имеет вид: .

t - статистики имеют t - распределение Стьюдента с степенями свободы. По таблицам распределения Стьюдента при определённом уровне значимости б и степенях свободы находят критическое значение.

Если, то нулевая гипотеза должна быть отклонена, коэффициенты считаются статистически значимыми.

Если, то нулевая гипотеза не может быть отклонена. (В случае, если коэффициент b статистически незначим, уравнение должно иметь вид, и это означает, что связь между признаками отсутствует. В случае, если коэффициент а статистически незначим, рекомендуется оценить новое уравнение в виде).

Интервальные оценки коэффициентов линейного уравнения регрессии:

Доверительный интервал для а: .

Доверительный интервал для b:

Это означает, что с заданной надёжностью (где - уровень значимости) истинные значения а, b находятся в указанных интервалах.

Коэффициент регрессии имеет четкую экономическую интерпретацию, поэтому доверительные границы интервала не должны содержать противоречивых результатов, например, Они не должны включать нуль.

Анализ статистической значимости уравнения в целом.

Распределение Фишера в регрессионном анализе

Оценка значимости уравнения регрессии в целом дается с помощью F- критерия Фишера. При этом выдвигается нулевая гипотеза о том, что все коэффициенты регрессии, за исключением свободного члена а, равны нулю и, следовательно, фактор х не оказывает влияния на результат y (или).

Величина F - критерия связана с коэффициентом детерминации. В случае множественной регрессии:

где m - число независимых переменных.

В случае парной регрессии формула F - статистики принимает вид:

При нахождении табличного значения F- критерия задается уровень значимости (обычно 0,05 или 0,01) и две степени свободы: - в случае множественной регрессии, - для парной регрессии.

Если, то отклоняется и делается вывод о существенности статистической связи между y и x.

Если, то вероятность уравнение регрессии считается статистически незначимым, не отклоняется.

Замечание. В парной линейной регрессии. Кроме того, поэтому. Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Распределение Фишера может быть использовано не только для проверки гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии, но и гипотезы о равенстве нулю части этих коэффициентов. Это важно при развитии линейной регрессионной модели, так как позволяет оценить обоснованность исключения отдельных переменных или их групп из числа объясняющих переменных, или же, наоборот, включения их в это число.

Пусть, например, вначале была оценена множественная линейная регрессия по п наблюдениям с т объясняющими переменными, и коэффициент детерминации равен, затем последние k переменных исключены из числа объясняющих, и по тем же данным оценено уравнение, для которого коэффициент детерминации равен (, т.к. каждая дополнительная переменная объясняет часть, пусть небольшую, вариации зависимой переменной).

Для того, чтобы проверить гипотезу об одновременном равенстве нулю всех коэффициентов при исключённых переменных, рассчитывается величина

имеющая распределение Фишера с степенями свободы.

По таблицам распределения Фишера, при заданном уровне значимости, находят. И если, то нулевая гипотеза отвергается. В таком случае исключать все k переменных из уравнения некорректно.

Аналогичные рассуждения могут быть проведены и по поводу обоснованности включения в уравнение регрессии одной или нескольких k новых объясняющих переменных.

В этом случае рассчитывается F - статистика

имеющая распределение. И если она превышает критический уровень, то включение новых переменных объясняет существенную часть необъяснённой ранее дисперсии зависимой переменной (т.е. включение новых объясняющих переменных оправдано).

Замечания. 1. Включать новые переменные целесообразно по одной.

2. Для расчёта F - статистики при рассмотрении вопроса о включении объясняющих переменных в уравнение желательно рассматривать коэффициент детерминации с поправкой на число степеней свободы.

F - статистика Фишера используется также для проверки гипотезы о совпадении уравнений регрессии для отдельных групп наблюдений.

Пусть имеются 2 выборки, содержащие, соответственно, наблюдений. Для каждой из этих выборок оценено уравнение регрессии вида. Пусть СКО от линии регрессии (т.е.) равны для них, соответственно, .

Проверяется нулевая гипотеза: о том, что все соответствующие коэффициенты этих уравнений равны друг другу, т.е. уравнение регрессии для этих выборок одно и то же.

Пусть оценено уравнение регрессии того же вида сразу для всех наблюдений, и СКО.

Тогда рассчитывается F - статистика по формуле:

Она имеет распределение Фишера с степенями свободы. F - статистика будет близкой к нулю, если уравнение для обеих выборок одинаково, т.к. в этом случае. Т.е. если, то нулевая гипотеза принимается.

Если же, то нулевая гипотеза отвергается, и единое уравнение регрессии построить нельзя.

Итоговые тесты по эконометрике

1. Оценка значимости параметров уравнения регрессии осуществляется на основе:

А) t - критерия Стьюдента;

б) F -критерия Фишера – Снедекора;

в) средней квадратической ошибки;

г) средней ошибки аппроксимации.

2. Коэффициент регрессии в уравнении , характеризующем связь между объемом реализованной продукции (млн. руб.) и прибылью предприятий автомобильной промышленности за год (млн. руб.) означает, что при увеличении объема реализованной продукции на 1 млн. руб. прибыль увеличивается на:

г) 0,5млн. руб.;

в) 500тыс. руб.;

Г) 1,5 млн. руб.

3. Корреляционное отношение (индекс корреляции) измеряет степень тесноты связи между Х и Y :

а) только при нелинейной форме зависимости;

Б) при любой форме зависимости;

в) только при линейной зависимости.

4. По направлению связи бывают:

а) умеренные;

Б) прямые;

в) прямолинейные.

5. По 17 наблюдениям построено уравнение регрессии:
.
Для проверки значимости уравнения вычислено наблюдаемое значение t - статистики: 3.9. Вывод:

А) Уравнение значимо при a= 0,05;

б) Уравнение незначимо при a = 0,01;

в) Уравнение незначимо при a = 0,05.

6. Каковы последствия нарушения допущения МНК «математическое ожидание регрессионных остатков равно нулю»?

А) Смещенные оценки коэффициентов регрессии;

б) Эффективные, но несостоятельные оценки коэффициентов регрессии;

в) Неэффективные оценки коэффициентов регрессии;

г) Несостоятельные оценки коэффициентов регрессии.

7. Какое из следующих утверждений верно в случае гетероскедастичности остатков?

А) Выводы по t и F- статистикам являются ненадежными;

г) Оценки параметров уравнения регрессии являются смещенными.

8. На чем основан тест ранговой корреляции Спирмена?

А) На использовании t – статистики;

в) На использовании ;

9. На чем основан тест Уайта?

б) На использовании F– статистики;

В) На использовании ;

г) На графическом анализе остатков.

10. Каким методом можно воспользоваться для устранения автокорреляции?

11. Как называется нарушение допущения о постоянстве дисперсии остатков?

а) Мультиколлинеарность;

б) Автокорреляция;

В) Гетероскедастичность;

г) Гомоскедастичность.

12. Фиктивные переменные вводятся в:

а) только в линейные модели;

б) только во множественную нелинейную регрессию;

в) только в нелинейные модели;

Г) как в линейные, так и в нелинейные модели, приводимые к линейному виду.

13. Если в матрице парных коэффициентов корреляции встречаются
, то это свидетельствует:

А) О наличии мультиколлинеарности;

б) Об отсутствии мультиколлинеарности;

в) О наличии автокорреляции;

г) Об отсутствии гетероскедастичности.

14. С помощью какой меры невозможно избавиться от мультиколлинеарности?

а) Увеличение объема выборки;

Г) Преобразование случайной составляющей.

15. Если
и ранг матрицы А меньше (К-1) то уравнение:

а) сверхиденцифицировано;

Б) неидентифицировано;

в) точно идентифицировано.

16.Уравнение регрессии имеет вид:

А)
;

б)
;

в)
.

17.В чем состоит проблема идентификации модели?

А) получение однозначно определенных параметров модели, заданной системой одновременных уравнений;

б) выбор и реализация методов статистического оценивания неизвестных параметров модели по исходным статистическим данным;

в) проверка адекватности модели.

18. Какой метод применяется для оценивания параметров сверхиденцифицированного уравнения?

В) ДМНК, КМНК;

19. Если качественная переменная имеет k альтернативных значений, то при моделировании используются:

А) (k-1) фиктивная переменная;

б) kфиктивных переменных;

в) (k+1) фиктивная переменная.

20. Анализ тесноты и направления связей двух признаков осуществляется на основе:

А) парного коэффициента корреляции;

б) коэффициента детерминации;

в) множественного коэффициента корреляции.

21. В линейном уравнении x = а 0 +a 1 х коэффициент регрессии показывает:

а) тесноту связи;

б) долю дисперсии "Y", зависимую от "X";

В) на сколько в среднем изменится "Y" при изменении "X" на одну единицу;

г) ошибку коэффициента корреляции.

22. Какой показатель используется для определения части вариации, обусловленной изменением величины изучаемого фактора?

а) коэффициент вариации;

б) коэффициент корреляции;

В) коэффициент детерминации;

г) коэффициент эластичности.

23. Коэффициент эластичности показывает:

А) на сколько % изменится значение y при изменении x на 1 %;

б) на сколько единиц своего измерения изменится значение yпри измененииxна 1 %;

в) на сколько % изменится значение yпри измененииxна ед. своего измерения.

24. Какие методы можно применить для обнаружения гетероскедастичности ?

А) Тест Голфелда-Квандта;

Б) Тест ранговой корреляции Спирмена;

в) Тест Дарбина- Уотсона.

25. На чем основан тест Голфельда -Квандта

а) На использовании t– статистики;

Б) На использовании F – статистики;

в) На использовании ;

г) На графическом анализе остатков.

26. С помощью каких методов нельзя устранить автокорреляцию остатков?

а) Обобщенным методом наименьших квадратов;

Б) Взвешенным методом наименьших квадратов;

В) Методом максимального правдоподобия;

Г) Двухшаговым методом наименьших квадратов.

27. Как называется нарушение допущения о независимости остатков?

а) Мультиколлинеарность;

Б) Автокорреляция;

в) Гетероскедастичность;

г) Гомоскедастичность.

28. Каким методом можно воспользоваться для устранения гетероскедастичности?

А) Обобщенным методом наименьших квадратов;

б) Взвешенным методом наименьших квадратов;

в) Методом максимального правдоподобия;

г) Двухшаговым методом наименьших квадратов.

30. Если по t -критерию большинство коэффициентов регрессии статистически значимы, а модель в целом по F - критерию незначима то это может свидетельствовать о:

а) Мультиколлинеарности;

Б) Об автокорреляции остатков;

в) О гетероскедастичности остатков;

г) Такой вариант невозможен.

31. Возможно ли с помощью преобразования переменных избавиться от мультиколлинеарности?

а) Эта мера эффективна только при увеличении объема выборки;

32. С помощью какого метода можно найти оценки параметра уравнения линейной регрессии:

А) методом наименьшего квадрата;

б) корреляционно-регрессионного анализа;

в) дисперсионного анализа.

33. Построено множественное линейное уравнение регрессии с фиктивными переменными. Для проверки значимости отдельных коэффициентов используется распределение:

а) Нормальное;

б) Стьюдента;

в) Пирсона;

г) Фишера-Снедекора.

34. Если
и ранг матрицы А больше (К-1) то уравнение:

А) сверхиденцифицировано;

б) неидентифицировано;

в) точно идентифицировано.

35. Для оценивания параметров точно идентифицируемой системы уравнений применяется:

а) ДМНК, КМНК;

б) ДМНК, МНК, КМНК;

36. Критерий Чоу основывается на применении:

А) F - статистики;

б) t - статистики;

в) критерии Дарбина –Уотсона.

37. Фиктивные переменные могут принимать значения:

г) любые значения.

39. По 20 наблюдениям построено уравнение регрессии:
.
Для проверки значимости уравнения вычислено значение статистики: 4.2. Выводы:

а) Уравнение значимо при a=0.05;

б) Уравнение незначимо при a=0.05;

в) Уравнение незначимо при a=0.01.

40. Какое из следующих утверждений не верно в случае гетероскедастичности остатков?

а) Выводы по tиF- статистикам являются ненадежными;

б) Гетероскедастичность проявляется через низкое значение статистики Дарбина-Уотсона;

в) При гетероскедастичности оценки остаются эффективными;

г) Оценки являются смещенными.

41. Тест Чоу основан на сравнении:

А) дисперсий;

б) коэффициентов детерминации;

в) математических ожиданий;

г) средних.

42. Если в тесте Чоу
то считается:

А) что разбиение на подынтервалы целесообразно с точки зрения улучшения качества модели;

б) модель является статистически незначимой;

в) модель является статистически значимой;

г) что нет смысла разбивать выборку на части.

43. Фиктивные переменные являются переменными:

а) качественными;

б) случайными;

В) количественными;

г) логическими.

44. Какой из перечисленных методов не может быть применен для обнаружения автокорреляции?

а) Метод рядов;

б) критерий Дарбина-Уотсона;

в) тест ранговой корреляции Спирмена;

Г) тест Уайта.

45. Простейшая структурная форма модели имеет вид:

А)

б)

в)

г)
.

46. С помощью каких мер возможно избавиться от мультиколлинеарности?

а) Увеличение объема выборки;

б) Исключения переменных высококоррелированных с остальными;

в) Изменение спецификации модели;

г) Преобразование случайной составляющей.

47. Если
и ранг матрицы А равен (К-1) то уравнение:

а) сверхиденцифицировано;

б) неидентифицировано;

В) точно идентифицировано;

48. Модель считается идентифицированной, если:

а) среди уравнений модели есть хотя бы одно нормальное;

Б) каждое уравнение системы идентифицируемо;

в) среди уравнений модели есть хотя бы одно неидентифицированное;

г) среди уравнений модели есть хотя бы одно сверхидентифицированное.

49. Какой метод применяется для оценивания параметров неиденцифицированного уравнения?

а) ДМНК, КМНК;

б) ДМНК, МНК;

В) параметры такого уравнения нельзя оценить.

50. На стыке каких областей знаний возникла эконометрика:

А) экономическая теория; экономическая и математическая статистика;

б) экономическая теория, математическая статистика и теория вероятности;

в) экономическая и математическая статистика, теория вероятности.

51. В множественном линейном уравнении регрессии строятся доверительные интервалы для коэффициентов регрессии с помощью распределения:

а) Нормального;

Б) Стьюдента;

в) Пирсона;

г) Фишера-Снедекора.

52. По 16 наблюдениям построено парное линейное уравнение регрессии. Для проверки значимости коэффициента регрессии вычислено t на6л =2.5.

а) Коэффициент незначим при a=0.05;

б) Коэффициент значим при a=0.05;

в) Коэффициент значим при a=0.01.

53. Известно, что между величинами X и Y существует положительная связь. В каких пределах находится парный коэффициент корреляции?

а) от -1 до 0;

б) от 0 до 1;

В) от –1 до 1.

54. Множественный коэффициент корреляции равен 0.9. Какой процент дисперсии результативного признака объясняется влиянием всех факторных признаков?

55. Какой из перечисленных методов не может быть применен для обнаружения гетероскедастичности ?

А) Тест Голфелда-Квандта;

б) Тест ранговой корреляции Спирмена;

в) метод рядов.

56. Приведенная форма модели представляет собой:

а) систему нелинейных функций экзогенных переменных от эндогенных;

Б) систему линейных функций эндогенных переменных от экзогенных;

в) систему линейных функций экзогенных переменных от эндогенных;

г) систему нормальных уравнений.

57. В каких пределах меняется частный коэффициент корреляции вычисленный по рекуретным формулам?

а) от - до +;

б) от 0 до 1;

в) от 0 до + ;

Г) от –1 до +1.

58. В каких пределах меняется частный коэффициент корреляции вычисленный через коэффициент детерминации?

а) от - до +;

Б) от 0 до 1;

в) от 0 до + ;

г) от –1 до +1.

59. Экзогенные переменные:

а) зависимые переменные;

Б) независимые переменные;

61. При добавлении в уравнение регрессии еще одного объясняющего фактора множественный коэффициент корреляции:

а) уменьшится;

б) возрастет;

в) сохранит свое значение.

62. Построено гиперболическое уравнение регрессии: Y = a + b / X . Для проверки значимости уравнения используется распределение:

а) Нормальное;

Б) Стьюдента;

в) Пирсона;

г) Фишера-Снедекора.

63. Для каких видов систем параметры отдельных эконометрических уравнений могут быть найдены с помощью традиционного метода наименьших квадратов?

а) система нормальных уравнений;

Б) система независимых уравнений;

В) система рекурсивных уравнений;

Г) система взаимозависимых уравнений.

64. Эндогенные переменные:

А) зависимые переменные;

б) независимые переменные;

в) датированные предыдущими моментами времени.

65. В каких пределах меняется коэффициент детерминации?

а) от 0 до +;

б) от -до +;

В) от 0 до +1;

г) от -l до +1.

66. Построено множественное линейное уравнение регрессии. Для проверки значимости отдельных коэффициентов используется распределение:

а) Нормальное;

б) Стьюдента;

в) Пирсона;

Г) Фишера-Снедекора.

67. При добавлении в уравнение регрессии еще одного объясняющего фактора коэффициент детерминации:

а) уменьшится;

Б) возрастет;

в) сохранит свое значение;

г) не уменьшится.

68. Суть метода наименьших квадратов заключается в том, что:

А) оценка определяется из условия минимизации суммы квадратов отклонений выборочных данных от определяемой оценки;

б) оценка определяется из условия минимизации суммы отклонений выборочных данных от определяемой оценки;

в) оценка определяется из условия минимизации суммы квадратов отклонений выборочной средней от выборочной дисперсии.

69. К какому классу нелинейных регрессий относится парабола:

73. К какому классу нелинейных регрессий относится экспоненциальная кривая:

74. К какому классу нелинейных регрессий относится функция вида ŷ
:

А) регрессии, нелинейные относительно включенных в анализ переменных, но линейных по оцениваемым параметрам;

б) нелинейные регрессии по оцениваемым параметрам.

78. К какому классу нелинейных регрессий относится функция вида ŷ
:

а) регрессии, нелинейные относительно включенных в анализ переменных, но линейных по оцениваемым параметрам;

Б) нелинейные регрессии по оцениваемым параметрам.

79. В уравнении регрессии в форме гиперболы ŷ
если величина
b >0 , то:

А) при увеличении факторного признака х значения результативного признака у замедленно уменьшаются, и при х→∞ средняя величина у будет равна а;

б) то значение результативного признака у возрастает с замедленным ростом при увеличении факторного признака х , и при х→∞

81. Коэффициент эластичности определяется по формуле

А) Линейной функции;

б) Параболы;

в) Гиперболы;

г) Показательной кривой;

д) Степенной.

82. Коэффициент эластичности определяется по формуле
для модели регрессии в форме:

а) Линейной функции;

Б) Параболы;

в) Гиперболы;

г) Показательной кривой;

д) Степенной.

86. Уравнение
называется:

А) линейным трендом;

б) параболическим трендом;

в) гиперболическим трендом;

г) экспоненциальным трендом.

89. Уравнение
называется:

а) линейным трендом;

б) параболическим трендом;

в) гиперболическим трендом;

Г) экспоненциальным трендом.

90. Система виды называется:

А) системой независимых уравнений;

б) системой рекурсивных уравнений;

в) системой взаимозависимых (совместных, одновременных) уравнений.

93. Эконометрику можно определить как:

А) это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенных для того, чтобы на базе экономической теории, экономической статистики и математико-статистического инструментария придавать конкретное количественное выражение общим (качественным) закономерностям, обусловленным экономической теорией;

Б) наука об экономических измерениях;

В) статистический анализ экономических данных.

94. К задачам эконометрики можно отнести:

А) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы;

Б) имитация возможных сценариев социально-экономического развития системы для выявления того, как планируемые изменения тех или иных поддающихся управлению параметров скажутся на выходных характеристиках;

в) проверка гипотез по статистическим данным.

95. По характеру различают связи:

А) функциональные и корреляционные;

б) функциональные, криволинейные и прямолинейные;

в) корреляционные и обратные;

г) статистические и прямые.

96. При прямой связи с увеличением факторного признака:

а) результативный признак уменьшается;

б) результативный признак не изменяется;

В) результативный признак увеличивается.

97. Какие методы используются для выявления наличия, характера и направления связи в статистике?

а) средних величин;

Б) сравнения параллельных рядов;

В) метод аналитической группировки;

г) относительных величин;

Д) графический метод.

98. Какой метод используется для выявления формы воздействия одних факторов на другие?

а) корреляционный анализ;

Б) регрессионный анализ;

в) индексный анализ;

г) дисперсионный анализ.

99. Какой метод используется для количественной оценки силы воздействия одних факторов на другие:

А) корреляционный анализ;

б) регрессионный анализ;

в) метод средних величин;

г) дисперсионный анализ.

100. Какие показатели по своей величине существуют в пределах от минус до плюс единицы:

а) коэффициент детерминации;

б) корреляционной отношение;

В) линейный коэффициент корреляции.

101. Коэффициент регрессии при однофакторной модели показывает:

А) на сколько единиц изменяется функция при изменении аргумента на одну единицу;

б) на сколько процентов изменяется функция на одну единицу изменения аргумента.

102. Коэффициент эластичности показывает:

а) на сколько процентов изменяется функция с изменением аргумента на одну единицу своего измерения;

Б) на сколько процентов изменяется функция с изменением аргумента на 1%;

в) на сколько единиц своего измерения изменяется функция с изменением аргумента на 1%.

105. Величина индекса корреляции, равная 0,087, свидетельствует:

А) о слабой их зависимости;

б) о сильной взаимосвязи;

в) об ошибках в вычислениях.

107. Величина парного коэффициента корреляции, равная 1,12, свидетельствует:

а) о слабой их зависимости;

б) о сильной взаимосвязи;

В) об ошибках в вычислениях.

109. Какие из приведенных чисел могут быть значениями парного коэффициента корреляции:

111. Какие из приведенных чисел могут быть значениями множественного коэффициента корреляции:

115. Отметьте правильную форму линейного уравнения регрессии:

а) ŷ
;

б) ŷ
;

в) ŷ
;

Г) ŷ
.

После того как уравнение регрессии построено и с помощью коэффициента детерминации оценена его точность, остается открытым вопрос за счет чего достигнута эта точность и соответственно можно ли этому уравнению доверять. Дело в том, что уравнение регрессии строилось не по генеральной совокупности, которая неизвестна, а по выборке из нее. Точки из генеральной совокупности попадают в выборку случайным образом, по этому в соответствии с теорией вероятности среди прочих случаев возможен вариант, когда выборка из “широкой” генеральной совокупности окажется “узкой” (рис. 15).

Рис. 15. Возможный вариант попадания точек в выборку из генеральной совокупности.

В этом случае:

а) уравнение регрессии, построенное по выборке, может значительно отличаться от уравнения регрессии для генеральной совокупности, что приведет к ошибкам прогноза;

б) коэффициент детерминации и другие характеристики точности окажутся неоправданно высокими и будут вводить в заблуждение о прогнозных качествах уравнения.

В предельном случае не исключен вариант, когда из генеральной совокупности представляющей собой облако с главной осью параллельной горизонтальной оси (отсутствует связь между переменными) за счет случайного отбора будет получена выборка, главная ось которой окажется наклоненной к оси. Таким образом, попытки прогнозировать очередные значения генеральной совокупности опираясь на данные выборки из нее чреваты не только ошибками в оценке силы и направления связи между зависимой и независимой переменными, но и опасностью найти связь между переменными там, где на самом деле ее нет.

В условиях отсутствия информации обо всех точках генеральной совокупности единственный способ уменьшить ошибки в первом случае заключается в использовании при оценке коэффициентов уравнения регрессии метода, обеспечивающего их несмещенность и эффективность. А вероятность наступления второго случая может быть значительно снижена благодаря тому, что априори известно одно свойство генеральной совокупности с двумя независимыми друг от друга переменными – в ней отсутствует именно эта связь. Достигается это снижение за счет проверки статистической значимости полученного уравнения регрессии.

Один из наиболее часто используемых вариантов проверки заключается в следующем. Для полученного уравнения регрессии определяется
-статистика
- характеристика точности уравнения регрессии, представляющая собой отношение той части дисперсии зависимой переменной которая объяснена уравнением регрессии к необъясненной (остаточной) части дисперсии. Уравнение для определения
-статистики в случае многомерной регрессии имеет вид:

где:
- объясненная дисперсия - часть дисперсии зависимой переменнойYкоторая объяснена уравнением регрессии;

-остаточная дисперсия - часть дисперсии зависимой переменнойYкоторая не объяснена уравнением регрессии, ее наличие является следствием действия случайной составляющей;

- число точек в выборке;

- число переменных в уравнении регрессии.

Как видно из приведенной формулы, дисперсии определяются как частное от деления соответствующей суммы квадратов на число степеней свободы. Число степеней свободы это минимально необходимое число значений зависимой переменной, которых достаточно для получения искомой характеристики выборки и которые могут свободно варьироваться с учетом того, что для этой выборки известны все другие величины, используемые для расчета искомой характеристики.

Для получения остаточной дисперсии необходимы коэффициенты уравнения регрессии. В случае парной линейной регрессии коэффициентов два, по этому в соответствии с формулой (принимая
) число степеней свободы равно
. Имеется в виду, что для определения остаточной дисперсии достаточно знать коэффициенты уравнения регрессии и только
значений зависимой переменной из выборки. Оставшиеся два значения могут быть вычислены на основании этих данных, а значит, не являются свободно варьируемыми.

Для вычисления объясненной дисперсии значений зависимой переменной вообще не требуются, так как ее можно вычислить, зная коэффициенты регрессии при независимых переменных и дисперсию независимой переменной. Для того чтобы убедиться в этом, достаточно вспомнить приводившееся ранее выражение
. По этому число степеней свободы для остаточной дисперсии равно числу независимых переменных в уравнении регрессии (для парной линейной регрессии
).

В результате
-критерий для уравнения парной линейной регрессии определяется по формуле:

.

В теории вероятности доказано, что
-критерий уравнения регрессии, полученного для выборки из генеральной совокупности у которой отсутствует связь между зависимой и независимой переменной имеет распределение Фишера, достаточно хорошо изученное. Благодаря этому для любого значения
-критерия можно рассчитать вероятность его появления и наоборот, определить то значение
-критерия которое он не сможет превысить с заданной вероятностью.

Для осуществления статистической проверки значимости уравнения регрессии формулируется нулевая гипотеза об отсутствии связи между переменными (все коэффициенты при переменных равны нулю) и выбирается уровень значимости.

Уровень значимости – это допустимая вероятность совершитьошибку первого рода – отвергнуть в результате проверки верную нулевую гипотезу. В рассматриваемом случае совершить ошибку первого рода означает признать по выборке наличие связи между переменными в генеральной совокупности, когда на самом деле ее там нет.

Обычно уровень значимости принимается равным 5% или 1%. Чем выше уровень значимости (чем меньше
), тем вышеуровень надежности теста, равный
, т.е. тем больше шанс избежать ошибки признания по выборке наличия связи у генеральной совокупности на самом деле несвязанных между собой переменных. Но с ростом уровня значимости возрастает опасность совершенияошибки второго рода – отвергнуть верную нулевую гипотезу, т.е. не заметить по выборке имеющуюся на самом деле связь переменных в генеральной совокупности. По этому, в зависимости от того, какая ошибка имеет большие негативные последствия, выбирают тот или иной уровень значимости.

Для выбранного уровня значимости по распределению Фишера определяется табличное значение
вероятность превышения, которого в выборке мощностью, полученной из генеральной совокупности без связи между переменными, не превышает уровня значимости.
сравнивается с фактическим значением критерия для регрессионного уравнения.

Если выполняется условие
, то ошибочное обнаружение связи со значением
-критерия равным или большимпо выборке из генеральной совокупности с несвязанными между собой переменными будет происходить с вероятностью меньшей чем уровень значимости. В соответствии с правилом “очень редких событий не бывает”, приходим к выводу, что установленная по выборке связь между переменными имеется и в генеральной совокупности, из которой она получена.

Если же оказывается
, то уравнение регрессии статистически не значимо. Иными словами существует реальная вероятность того, что по выборке установлена не существующая в реальности связь между переменными. К уравнению, не выдержавшему проверку на статистическую значимость, относятся так же, как и к лекарству с истекшим сроком годнос- ти – такие лекарства не обязательно испорчены, но раз нет уверенности в их качестве, то их предпочитают не использовать. Это правило не уберегает от всех ошибок, но позволяет избежать наиболее грубых, что тоже достаточно важно.

Второй вариант проверки, более удобный в случае использования электронных таблиц, это сопоставление вероятности появления полученного значения
-критерия с уровнем значимости. Если эта вероятность оказывается ниже уровня значимости
, значит уравнение статистически значимо, в противном случае нет.

После того как выполнена проверка статистической значимости регрессионного уравнения в целом полезно, особенно для многомерных зависимостей осуществить проверку на статистическую значимость полученных коэффициентов регрессии. Идеология проверки такая же как и при проверке уравнения в целом но в качестве критерия используется -критерий Стьюдента , определяемый по формулам:

и

где: , - значения критерия Стьюдента для коэффициентовисоответственно;

- остаточная дисперсия уравнения регрессии;

- число точек в выборке;

- число переменных в выборке, для парной линейной регрессии
.

Полученные фактические значения критерия Стьюдента сравниваются с табличными значениями
, полученными из распределения Стьюдента. Если оказывается, что
, то соответствующий коэффициент статистически значим, в противном случае нет. Второй вариант проверки статистической значимости коэффициентов – определить вероятность появления критерия Стьюдента
и сравнить с уровнем значимости
.

Для переменных, чьи коэффициенты оказались статистически не значимы, велика вероятность того, что их влияние на зависимую переменную в генеральной совокупности вообще отсутствует. По этому или необходимо увеличить число точек в выборке, тогда возможно коэффициент станет статистически значимым и заодно уточнится его значение, или в качестве независимых переменных найти другие, более тесно связанные с зависимой переменной. Точность прогнозирования при этом в обоих случаях возрастет.

В качестве экспрессного метода оценки значимости коэффициентов уравнения регрессии можно применять следующее правило – если критерий Стьюдента больше 3, то такой коэффициент, как правило, оказывается статистически значим. А вообще считается, что для получения статистически значимых уравнений регрессии необходимо, чтобы выполнялось условие
.

Стандартная ошибка прогнозирования по полученному уравнению регрессии неизвестного значения
при известном
оценивают по формуле:

Таким образом прогноз с доверительной вероятностью 68% может быть представлен в виде:

В случае если требуется иная доверительная вероятность
, то для уровня значимости
необходимо найти критерий Стьюдента
идоверительный интервал для прогноза с уровнем надежности
будет равен
.

Прогнозирование многомерных и нелинейных зависимостей

В случае если прогнозируемая величина зависит от нескольких независимых переменных, то в этом случае имеется многомерная регрессия вида:

где:
- коэффициенты регрессии, описывающие влияние переменных
на прогнозируемую величину.

Методика определения коэффициентов регрессии не отличается от парной линейной регрессии, особенно при использовании электронной таблицы, так как там применяется одна и та же функция и для парной и для многомерной линейной регрессии. При этом желательно чтобы между независимыми переменными отсутствовали взаимосвязи, т.е. изменение одной переменной не сказывалось на значениях других переменных. Но это требование не является обязательным, важно чтобы между переменными отсутствовали функциональные линейные зависимости. Описанные выше процедуры проверки статистической значимости полученного уравнения регрессии и его отдельных коэффициентов, оценка точности прогнозирования остается такой же как и для случая парной линейной регрессии. В тоже время применение многомерных регрессий вместо парной обычно позволяет при надлежащем выборе переменных существенно повысить точность описания поведения зависимой переменной, а значит и точность прогнозирования.

Кроме этого уравнения многомерной линейной регрессии позволяют описать и нелинейную зависимость прогнозируемой величины от независимых переменных. Процедура приведения нелинейного уравнения к линейному виду называется линеаризацией . В частности если эта зависимость описывается полиномом степени отличной от 1, то, осуществив замену переменных со степенями отличными от единицы на новые переменные в первой степени, получаем задачу многомерной линейной регрессии вместо нелинейной. Так, например если влияние независимой переменной описывается параболой вида

то замена
позволяет преобразовать нелинейную задачу к многомерной линейной вида

Так же легко могут быть преобразованы нелинейные задачи у которых нелинейность возникает вследствие того, что прогнозируемая величина зависит от произведения независимых переменных. Для учета такого влияния необходимо ввести новую переменную равную этому произведению.

В тех случаях, когда нелинейность описывается более сложными зависимостями, линеаризация возможна за счет преобразования координат. Для этого рассчитываются значения
и строятся графики зависимости исходных точек в различных комбинациях преобразованных переменных. Та комбинация преобразованных координат или преобразованных и не преобразованных координат, в которой зависимость ближе всего к прямой линии подсказывает замену переменных которая приведет к преобразованию нелинейной зависимости к линейному виду. Например, нелинейная зависимость вида

превращается в линейную вида

где:
,
и
.

Полученные коэффициенты регрессии для преобразованного уравнения остаются несмещенными и эффективными, но проверка статистической значимости уравнения и коэффициентов невозможна

Проверка обоснованности применения метода наименьших квадратов

Применение метода наименьших квадратов обеспечивает эффективность и несмещенность оценок коэффициентов уравнения регрессии при соблюдении следующих условий (условий Гауса -Маркова ):

1.

2.

3. значения не зависят друг от друга

4. значения не зависят от независимых переменных

Наиболее просто можно проверить соблюдение этих условий путем построения графиков остатков
в зависимости от, затем от независимой (независимых) переменных. Если точки на этих графиках расположены в коридоре расположенном симметрично оси абсцисс и в расположении точек не просматриваются закономерности, то условия Гауса-Маркова выполнены и возможности повысить точность уравнения регрессии отсутствуют. Если это не так, то существует возможность существенно повысить точность уравнения и для этого необходимо обратиться к специальной литературе.

Для проверки значимости анализируется отношение коэффициента регрессии и его среднеквадратичного отклонения. Это отношение является распределением Стьюдента, то есть для определения значимости используем t – критерий:

- СКО от остаточной дисперсии;

- сумма отклонений от среднего значения

Если t рас. >t таб. , то коэффициент b i является значимым.

Доверительный интервал определяется по формуле:

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

    Взять исходные данные согласно варианту работы (по номеру студента в журнале). Задан статический объект управления с двумя входами X 1 , X 2 и одним выходом Y . На объекте проведен пассивный эксперимент и получена выборка объемом 30 точек, содержащая значения Х 1 , Х 2 и Y для каждого эксперимента.

    Открыть новый файл в Excel 2007. Ввести исходную информацию в столбцы исходной таблицы - значения входных переменных X 1 , Х 2 и выходной переменной Y .

    Подготовить дополнительно два столбца для ввода расчетных значений Y и остатков.

    Вызвать программу «Регрессия»: Данные/ Анализ данных/ Регрессия.

Рис. 1. Диалоговое окно «Анализ данных».

    Ввести в диалоговое окно «Регрессия» адреса исходных данных:

    входной интервал Y, входной интервал X (2 столбца),

    установить уровень надежности 95%,

    в опции «Выходной интервал, указать левую верхнюю ячейку места вывода данных регрессионного анализа (первую ячейку на 2-странице рабочего листа),

    включить опции «Остатки» и «График остатков»,

    нажать кнопку ОК для запуска регрессионного анализа.

Рис. 2. Диалоговое окно «Регрессия».

    Excel выведет 4 таблицы и 2 графика зависимости остатков от переменных Х1 и Х2 .

    Отформатировать таблицу «Вывод итогов» - расширить столбец с наименованиями выходных данных, сделать во втором столбце 3 значащие цифры после запятой.

    Отформатировать таблицу «Дисперсионный анализ»- сделать удобным для чтения и понимания количество значащих цифр после запятых, сократить наименование переменных и настроить ширину столбцов.

    Отформатировать таблицу коэффициентов уравнения - сократить наименование переменных и скорректировать при необходимости ширину столбцов, сделать удобным для чтения и понимания количество значащих цифр, удалить 2 последних столбца (значения и разметку таблицы).

    Данные из таблицы «Вывод остатка» перенести в подготовленные столбцы исходной таблицы, затем таблицу «Вывод остатка» удалить (опция «специальная вставка»).

    Ввести полученные оценки коэффициентов в исходную таблицу.

    Подтянуть таблицы результатов по максимуму вверх страницы.

    Построить под таблицами диаграммы Y эксп , Y расч и ошибки прогноза (остатка).

    Отформатировать диаграммы остатков. По полученным графикам оценить правильность модели по входам Х1, Х2 .

    Распечатать результаты регрессионного анализа.

    Разобраться с результатами регрессионного анализа.

    Подготовить отчет по работе.

ПРИМЕР ВЫПОЛНЕНИЯ РАБОТЫ

Прием выполнения регрессионного анализа в пакете EXCEL представлен на рисунках 3-5.

Рис. 3. Пример регрессионного анализа в пакете EXCEL.


Рис.4 . Графики остатков переменных Х1, Х2

Рис. 5. Графики Y эксп ,Y расч и ошибки прогноза (остатка).

По данным регрессионного анализа можно сказать:

1. Уравнение регрессии полученное с помощью Excel, имеет вид:

    Коэффициент детерминации:

Вариация результата на 46,5% объясняется вариацией факторов.

    Общий F-критерий проверяет гипотезу о статистической значимости уравнения регрессии. Анализ выполняется при сравнении фактического и табличного значения F-критерия Фишера.

Так как фактическое значение превышает табличное
, то делаем вывод, что полученной уравнение регрессии статистически значимо.

    Коэффициент множественной корреляции:

    b 0 :

t таб. (29, 0.975)=2.05

b 0 :

Доверительный интервал:

    Определяем доверительный интервал для коэффициента b 1 :

Проверка значимости коэффициента b 1 :

t рас. >t таб. , коэффициент b 1 является значимым

Доверительный интервал:

    Определяем доверительный интервал для коэффициентаb 2 :

Проверка значимости для коэффициентаb 2 :

Определяем доверительный интервал:

ВАРИАНТЫ ЗАДАНИЙ

Таблица 2. Варианты заданий

№ варианта

Результативный признак Y i

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 2

Y 2

Y 2

Y 2

Y 2

№ фактора X i

№ фактора X i

Продолжение таблицы 1

№ варианта

Результативный признак Y i

Y 2

Y 2

Y 2

Y 2

Y 2

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

№ фактора X i

№ фактора X i

Таблица 3. Исходные данные

Y 1

Y 2

Y 3

X 1

X 2

X 3

X 4

X 5

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

    Задачи регрессионного анализа.

    Предпосылки регрессионного анализа.

    Основное уравнение дисперсионного анализа.

    Что показывает F- отношение Фишера?

    Как определяется табличное значение критерия Фишера?

    Что показывает коэффициент детерминации?

    Как определить значимость коэффициентов регрессии?

    Как определить доверительный интервал коэффициентов регрессии?

    Как определить расчетные значение t-критерия?

    Как определить табличное значение t-критерия?

    Сформулируйте основную идею дисперсионного анализа, для решения каких задач он наиболее эффективен?

    Каковы основные теоретические предпосылки дисперсионный анализ?

    Произведите разложение общей суммы квадратов отклонений на составляющие в дисперсионном анализе.

    Как получить оценки дисперсий из сумм квадратов отклонений?

    Как получаются необходимые числа степеней свободы?

    Как определяется стандартная ошибка?

    Поясните схему двухфакторного дисперсионного анализа.

    Чем отличается перекрестная классификация от иерархической классификации?

    Чем отличаются сбалансированные данные?

Отчет оформляется в текстовом редакторе Word на бумаге формата А4 ГОСТ 6656-76 (210х297 мм) и содержит:

    Название лабораторной работы.

    Цель работы.

  1. Результаты вычисления.

ВРЕМЯ, ОТВЕДЕННОЕ НА ВЫПОЛНЕНИЕ

ЛАБОРАТОРНОЙ РАБОТЫ

Подготовка к работе – 0,5 акад. часа.

Выполнение работы – 0,5 акад. часа.

Расчеты на ЭВМ – 0,5 акад. часа.

Оформление работы – 0,5 акад. часа.

ЛитЕратура

    Идентификация объектов управления. / А. Д. Семенов, Д. В. Артамонов, А. В. Брюхачев. Учебное пособие. - Пенза: ПГУ, 2003. - 211 с.

    Основы статистического анализа. Практикум по статистическим методам и исследованию операций с использованием пакетов STATISTIC и EXCEL. / Вуколов Э.А. Учебное пособие. - М.: ФОРУМ, 2008. - 464 с.

    Основы теории идентификации объектов управления. / А.А. Игнатьев, С.А. Игнатьев. Учебное пособие. - Саратов: СГТУ, 2008. - 44 с.

    Теория вероятности и математическая статистика в примерах и задачах с применением EXCEL. / Г.В. Горелова, И.А. Кацко. - Ростов н/Д: Феникс, 2006.- 475 с.

    Цель работы 2

    Основные понятия 2

    Порядок выполнения работы 6

    Пример выполнения работы 9

    Вопросы для самоконтроля 13

    Время, отведенное на выполнение работы 14

    Оценив параметры a и b , мы получили уравнение регрессии, по которому можно оценить значения y по заданным значениям x . Естественно полагать, что расчетные значения зависимой переменной не будут совпадать с действительными значениями, так как линия регрессии описывает взаимосвязь лишь в среднем, в общем. Отдельные значения рассеяны вокруг нее. Таким образом, надежность получаемых по уравнению регрессии расчетных значений во многом определяется рассеянием наблюдаемых значений вокруг линии регрессии. На практике, как правило, дисперсия ошибок неизвестна и оценивается по наблюдениям одновременно с параметрами регрессии a и b . Вполне логично предположить, что оценка связана с суммой квадратов остатков регрессии. Величина является выборочной оценкой дисперсии возмущений , содержащихся в теоретической модели . Можно показать, что для модели парной регрессии

    где - отклонение фактического значения зависимой переменной от ее расчетного значения.

    Если , то для всех наблюдений фактические значения зависимой переменной совпадают с расчетными (теоретическими) значениями. Графически это означает, что теоретическая линия регрессии (линия, построенная по функции ) проходит через все точки корреляционного поля, что возможно только при строго функциональной связи. Следовательно, результативный признак у полностью обусловлен влиянием фактора х.

    Обычно на практике имеет место некоторое рассеивание точек корреляционного поля относительно теоретической линии регрессии, т. е. отклонения эмпирических данных от теоретических . Этот разброс обусловлен как влиянием фактора х , т.е. регрессией y по х , (такую дисперсию называют объясненной, так как она объясняется уравнением регрессии),так и действием прочих причин (необъясненная вариация, случайная). Величина этих отклонений и лежит в основе расчета показателей качества уравнения.

    Согласно основному положению дисперсионного анализа общая сумма квадратов отклонений зависимой переменной y от среднего значения может быть разложена на две составляющие: объясненную уравнением регрессии и необъясненную:

    ,

    где - значения y , вычисленные по уравнению .

    Найдем отношение суммы квадратов отклонений, объясненной уравнением регрессии, к общей сумме квадратов:

    , откуда

    . (7.6)

    Отношение части дисперсии, объясненной уравнением регрессии к общей дисперсии результативного признака называется коэффициентом детерминации . Значение не может превзойти единицы и это максимальное значение будет только достигнуто при , т.е. когда каждое отклонение равно нулю и поэтому все точки диаграммы рассеяния в точности лежат на прямой.

    Коэффициент детерминации характеризует долю объясненной регрессией дисперсии в общей величине дисперсии зависимой переменной. Соответственно величина характеризует долю вариации (дисперсии) у, необъясненную уравнением регрессии, а значит, вызванную влиянием прочих неучтенных в модели факторов. Чем ближе к единице, тем выше качество модели.



    При парной линейной регрессии коэффициент детерминации равен квадрату парного линейного коэффициента корреляции: .

    Корень из этого коэффициента детерминации есть коэффициент (индекс) множественной корреляции, или теоретическое корреляционное отношение.

    Для того чтобы узнать, действительно ли полученное при оценке регрессии значение коэффициента детерминации отражает истинную зависимость между y и x выполняют проверку значимости построенного уравнения в целом и отдельных параметров. Проверка значимости уравнения регрессии позволяет узнать, пригодно уравнение регрессии для практического использования, например, для прогноза или нет.

    При этом выдвигают основную гипотезу о незначимости уравнения в целом, которая формально сводится к гипотезе о равенстве нулю параметров регрессии, или, что то же самое, о равенстве нулю коэффициента детерминации: . Альтернативная гипотеза о значимости уравнения - гипотеза о неравенстве нулю параметров регрессии или о неравенстве нулю коэффициента детерминации: .

    Для проверки значимости модели регрессии используют F- критерий Фишера, вычисляемый как отношение суммы квадратов (в расчете на одну независимую переменную) к остаточной сумме квадратов (в расчете на одну степень свободы):

    , (7.7)

    где k – число независимых переменных.

    После деления числителя и знаменателя соотношения (7.7) на общую сумму квадратов отклонений зависимой переменной, F- критерий может быть эквивалентно выражен на основе коэффициента :

    .

    Если нулевая гипотеза справедлива, то объясненная уравнением регрессии и необъясненная (остаточная) дисперсии не отличаются друг от друга.

    Расчетное значение F- критерий сравнивается с критическим значением, которое зависит от числа независимых переменных k , и от числа степеней свободы (n-k-1) . Табличное (критическое) значение F- критерия – это максимальная величина отношений дисперсий, которое может иметь место при случайном расхождении их для заданного уровня вероятности наличия нулевой гипотезы. Если расчетное значение F- критерий больше табличного при заданном уровне значимости, то нулевая гипотеза об отсутствии связи отклоняется и делается вывод о существенности этой связи, т.е. модель считается значимой.

    Для модели парной регрессии

    .

    В линейной регрессии обычно оценивается значимость не только уравнения в целом, но и отдельных его коэффициентов. Для этого определяется стандартная ошибка каждого из параметров. Стандартные ошибки коэффициентов регрессии параметров определяются по формулам:

    , (7.8)

    (7.9)

    Стандартные ошибки коэффициентов регрессии или среднеквадратические отклонения, рассчитанные по формулам (7.8,7.9), как правило, приводятся в результатах расчета модели регрессии в статистических пакетах.

    Опираясь на среднеквадратические ошибки коэффициентов регрессии, проверяют значимость этих коэффициентов используя обычную схему проверки статистических гипотез.

    В качестве основной гипотезы выдвигают гипотезу о незначимом отличии от нуля «истинного» коэффициента регрессии. Альтернативной гипотезой при этом является гипотеза обратная, т. е. о неравенстве нулю «истинного» параметра регрессии. Проверка этой гипотезы осуществляется с помощью t- статистики, имеющей t -распределение Стьюдента:

    Затем расчетные значения t- статистики сравниваются с критическими значениями t- статистики, определяемыми по таблицам распределения Стьюдента. Критическое значение определяется в зависимости от уровня значимости α и числа степеней свободы, которое равно (n-k-1), п - число наблюдений, k - число независимых переменных. В случае линейной парной регрессии число степеней свободы равно (п- 2). Критическое значение также может быть вычислено на компьютере с помощью встроенной функции СТЬЮДРАСПОБР пакета Ехсеl.

    Если расчетное значение t- статистики больше критического, то основную гипотезу отвергают и считают, что с вероятностью (1-α) «истинный» коэффициент регрессии значимо отличается от нуля, что является статистическим подтверждением существования линейной зависимости соответствующих переменных.

    Если расчетное значение t- статистики меньше критического, то нет оснований отвергать основную гипотезу, т. е. «истинный» коэффициент регрессии незначимо отличается от нуля при уровне значимости α . В этом случае фактор, соответствующий этому коэффициенту должен быть исключен из модели.

    Значимость коэффициента регрессии можно установить методом построения доверительного интервала. Доверительный интервал для параметров регрессии a и b определяют следующим образом:

    ,

    ,

    где определяется по таблице распределения Стьюдента для уровня значимости α и числа степеней свободы (п- 2) для парной регрессии.

    Поскольку коэффициенты регрессии в эконометрических исследованиях имеют четкую экономическую интерпретацию, доверительные интервалы не должны содержать нуль. Истинное значение коэффициента регрессии не может одновременно содержать положительные и отрицательные величины, в том числе и нуль, иначе мы получаем противоречивые результаты при экономической интерпретации коэффициентов, чего не может быть. Таким образом, коэффициент значим, если полученный доверительный интервал не накрывает нуль.

    Пример 7.4. По данным примера 7.1:

    а) Построить парную линейную модель регрессии зависимости прибыли от реализации от отпускной цены с использованием программных средств обработки данных.

    б) Оценить значимость уравнения регрессии в целом, используя F- критерий Фишера при α=0,05.

    в) Оценить значимость коэффициентов модели регрессии, используя t -критерий Стьюдента при α=0,05 и α=0,1.

    Для проведения регрессионного анализа используем стандартную офисную программу EXCEL. Построение регрессионной модели проведем с помощью инструмента РЕГРЕССИЯ настройки ПАКЕТ АНАЛИЗА (рис.7.5), запуск которого осуществляется следующим образом:

    СервисАнализ данныхРЕГРЕССИЯОК.

    Рис.7.5. Использование инструмента РЕГРЕССИЯ

    В диалоговом окне РЕГРЕССИЯ в поле Входной интервал Y необходимо ввести адрес диапазона ячеек, содержащих зависимую переменную. В поле Входной интервал Х нужно ввести адреса одного или нескольких диапазонов, содержащих значения независимых переменных Флажок Метки в первой строке – устанавливается в активное состояние, если выделены и заголовки столбцов. На рис. 7.6. показана экранная форма вычисления модели регрессии с помощью инструмента РЕГРЕССИЯ.

    Рис. 7.6. Построение модели парной регрессии с помощью

    инструмента РЕГРЕССИЯ

    В результате работы инструмента РЕГРЕСИЯ формируется следующий протокол регрессионного анализа (рис.7.7).

    Рис. 7.7. Протокол регрессионного анализа

    Уравнение зависимости прибыли от реализации от отпускной цены имеет вид:

    Оценку значимости уравнения регрессии проведем используя F- критерий Фишера. Значение F- критерий Фишера возьмем из таблицы «Дисперсионный анализ» протокола EXCEL (рис. 7.7.). Расчетное значение F- критерия 53,372. Табличное значение F- критерия при уровне значимости α=0,05 и числе степеней свободы составляет 4,964. Так как , то уравнение считается значимым.

    Расчетные значения t -критерия Стьюдента для коэффициентов уравнения регрессии приведены в результативной таблице (рис. 7.7). Табличное значение t -критерия Стьюдента при уровне значимости α=0,05 и 10 степенях свободы составляет 2,228. Для коэффициента регрессии a , следовательно коэффициент a не значим. Для коэффициента регрессии b , следовательно, коэффициент b значим.