Самодельный осциллограф на микроконтроллере pic. Двухканальный USB осциллограф

Этот простой и дешёвый USB осциллограф был придуман и сделан просто ради развлечения. Давным давно довелось чинить какой-то мутный видеопроцессор, в котором спалили вход вплоть до АЦП. АЦП оказались доступными и недорогими, я купил на всякий случай парочку, один пошёл на замену, а другой остался. Недавно он попался мне на глаза и почитав документацию к нему я решил употребить его для чего-нибудь полезного в хозяйстве. В итоге получился вот такой приборчик. Обошёлся в копейки (ну рублей 1000 примерно), и пару выходных дней. При создании я постарался уменьшить количество деталей до минимума, при сохранении минимально необходимой для осциллографа функциональности. Сначала я решил, что получился какой-то уж больно несерьёзный аппарат, однако, сейчас я им постоянно пользуюсь, потому что он оказался весьма удобным - места на столе не занимает, легко помещается в карман (он размером с пачку сигарет) и обладает вполне приличными характеристиками:

Максимальная частота дискретизации - 6 МГц;
- Полоса пропускания входного усилителя - 0-16 МГц;
- Входной делитель - от 0.01 В/дел до 10 В/дел;
- Входное сопротивление - 1 МОм;
- Разрешение - 8 бит.

Для разных настроек и поиска неисправностей во всяких преобразователях питания, схемах управления бытовой техникой, для изучения всяких устройств и т.д., там где не требуются точные измерения и высокие частоты, а нужно просто посмотреть на форму сигнала частотой, скажем, до пары мегагерц - более чем достаточно.

Кнопка S2 - это часть железа нужного для бутлоадера. Если при подключении осциллографа к USB держать её нажатой, то PIC заработает в режиме бутлоадера и можно будет обновить прошивку осциллографа при помощи соответствующей утилиты.

В качестве АЦП (IC3) была использована "телевизионная" микросхема - TDA8708A . Она вполне доступна во всяких "Чип и Дип"ах и прочих местах добычи деталей. На самом деле это не только АЦП для видеосигнала, но и коммутатор входов, выравниватель и ограничитель уровней белого - чёрного и т.д. Но все эти прелести в данной конструкции не используются. АЦП весьма шустр - частота дискретизации - 30 МГц. В схеме он работает на тактовой частоте 12 МГц - быстрее не нужно, потому что PIC18F2550 просто не сможет быстрее считывать данные. А чем выше частота - тем больше потребление АЦП. Вместо TDA8708A можно использовать любой другой быстродействующий АЦП с параллельным выводом данных, например TDA8703 или что-нибудь от Analog Devices.

Тактовую частоту для АЦП удалось хитрым образом извлечь из PIC"а - там запущен ШИМ с частотой 12 МГц и скважностью 0.25. Тактовый импульс положительной полярности проходит в цикле Q1 PIC"а так что при любом обращении к порту B, которое происходит в цикле Q2 данные АЦП будут уже готовы. Ядро PIC"а работает на частоте 48 МГц, получаемой через PLL от кварца 4 МГц. Команда копирования из регистра в регистр выполняется за 2 такта или 8 циклов. Таким образом, данные АЦП возможно сохранять в память с максимальной частотой 6 МГц при помощи непрерывной последовательности команд MOVFF PORTB, POSTINC0. Для буфера данных используется один банк RAM PIC18F2550 размером 256 байт.

Меньшие частоты дискретизации реализуются добавлением задержки между командами MOVFF. В прошивке реализована простейшая синхронизация по отрицательному или положительному фронту входного сигнала. Цикл сбора данных в буфер запускается командой от PC по USB, после чего можно эти данные по USB прочитать. В результате PC получает 256 8-битных отсчётов которые может, например, отобразить в виде изображения.

Входная цепь проста до безобразия. Делитель входного напряжения без всяких изысков сделан на поворотном переключателе. К сожалению не удалось придумать как передавать в PIC положение переключателя, поэтому в графической морде осциллографа есть только значения напряжения в относительных единицах - делениях шкалы. Усилитель входного сигнала (IC2B) работает с усилением в 10 раз, смещение нуля, необходимое для АЦП (он воспринимает сигнал в диапазоне от Vcc - 2.41В до Vcc - 1.41В) обеспечивается напряжением с программируемого генератора опорного напряжения PIC (CVREF IC1, R7,R9) и делителем от отрицательного напряжения питания (R6,R10, R8). Т.к. в корпусе ОУ был "лишний" усилитель (IC2A), я использовал его как повторитель напряжения смещения.

Не забудьте про емкостные цепочки для частотной компенсации входной ёмкости вашего ОУ и ограничивающих диодов, которые отсутствуют на схеме - нужно подобрать ёмкости параллельно резисторам делителя и резистору R1, иначе частотные характеристики входной цепи загубят всю полосу пропускания. С постоянным током всё просто - входное сопротивление ОУ и закрытых диодов на порядки выше сопротивления делителя, так что делитель можно просто посчитать не учитывая входное сопротивление ОУ. Для переменного тока иначе - входная ёмкость ОУ и диодов составляют значительную величину по сравнению с ёмкостью делителя. Из сопротивления делителя и входной ёмкости ОУ и диодов получается пассивный ФНЧ, который искажает входной сигнал.

Чтобы нейтрализовать этот эффект нужно сделать так, чтобы входная ёмкость ОУ и диодов стала значительно меньше ёмкости делителя. Это можно сделать соорудив емкостной делитель параллельно резистивному. Посчитать такой делитель сложно, т.к. неизвестна как входная ёмкость схемы, так и ёмкость монтажа. Проще его подобрать.

Способ подбора такой:

1. Поставить конденсатор ёмкостью примерно 1000 пФ параллельно R18.
2. Выбрать самый чувствительный предел, подать на вход прямоугольные импульсы с частотой 1 кГц и размахом в несколько делений шкалы и подобрать конденсатор параллельно R1 так, чтобы прямоугольники на экране выглядели прямоугольниками, без пиков или завалов на фронтах.
3. Повторить операцию для каждого следующего предела, подбирая конденсаторы параллельно каждому резистору делителя соответственно пределу.
4. Повторить процесс с начала, и убедиться, что на всех пределах всё в порядке (может проявиться ёмкость монтажа конденсаторов), и, если что-то не так, слегка подкорректировать ёмкости.

Сам ОУ - это Analog Devices AD823 . Самая дорогая часть осциллографа. :) Но зато полоса 16 МГц - что весьма неплохо.А кроме того, это первое из шустрого, что попалось в розничной продаже за вменяемые деньги.

Конечно же этот сдвоенный ОУ без всяких переделок можно поменять на что-то типа LM2904 , но тогда придётся ограничится сигналами звукового диапазона. Больше 20-30 кГц оно не потянет.

Ну и форму прямоугольных, например, сигналов будет слегка искажать. А вот если удастся найти что-то типа OPA2350 (38МГц) - то будет наоборот замечательно.

Источник отрицательного напряжения питания для ОУ сделан на хорошо известной charge-pump ICL7660 . Минимум обвязки и никаких индуктивностей. Ток по выходу -5 В конечно у неё невелик, но нам много и не надо. Цепи питания аналоговой части изолированы от помех цифры индуктивностями и ёмкостями (L2, L3, C5, C6). Индуктивности попались номиналом 180 uГн, вот их и поставил. Никаких помех по питанию даже на самом чувствительном пределе.

Прошивка PIC заливается по USB с помощью бутлоадера который сидит с 0-го адреса в памяти программ и запускается если при включении удерживать нажатой кнопку S2. Так что прежде чем прошивать PIC - залейте туда сначала бутлоадер - будет проще менять прошивки.

При настройке собранных электронных схем, особенно цифровых, необходимо бывает проводить различные измерения. Для этого можно пользоваться различными пробниками, например логическим пробником, самым простым, состоящим из светодиода, токоограничительного резистора, и проводков оканчивающихся с одного конца щупом, а с другого крокодилом. С его помощью мы можем убедиться, присутствует ли у нас логическая единица, или ноль, например на ножке МК, или выводе Ардуино. Я же решил пойти дальше, собрать то, что думаю заинтересует простотой сборки многих новичков, позволит получить полезные знаний из теории, посмотреть на форму сигнала, например, как это выглядит при мигании того же светодиода, и конечно же им можно будет проверить наличие логического ноля или единицы, на ножке МК. В общем, решил собрать простейший осциллографический пробник, с подключением к компьютеру по USB порту.

Данная схема является иностранной разработкой, откуда впоследствии она перекочевала в Рунет, и разошлась по множеству сайтов. В поисках детальной информации при его сборке, обошел множество сайтов, не меньше 10-12. На всех них были только краткое описание, переведенное и содранное с забугорного сайта и прошивка для скачивания, с примером выставления фьюзов. Ниже представлена схема этого осциллографического пробника:

Я сознательно не называю его чисто осциллографом, потому что он не дотягивает до этого звания. Давайте разберем подробнее, что же он представляет из себя. Бюджет устройства составляет всего 250, максимум 300 рублей, и его сборку может позволить себе любой школьник или студент. Как наглядного пособия, для отработки навыков пайки, прошивания МК, в общем, для отработки всех навыков, необходимых для самостоятельного конструирования цифровых устройств. Если кто-то сразу загорелся и собрался немедленно бежать в магазин, за покупкой радиодеталей, подождите, у этого осциллографического пробника, есть несколько существенных минусов. У него очень неудобный софт, оболочка, в которой собственно мы и будем наблюдать наш сигнал. На следующем фото показано, как я ловлю момеху от пальца:

Сказать, что оболочка сырая, это значит ничего не сказать… Даже оболочки для использования, в качестве низкочастотного осциллографа на звуковой карте, существенно обходят ее по своим возможностям. На следующем фото, на короткое время касаюсь щупами выводов батарейки:

Начнем с того, что показания у нас выводятся в милливольтах, и шкалы по напряжению, соответствующей реальным значениям, попросту нет. Но и это еще не все. Схема устройства, как мы можем увидеть, посмотрев на рисунок со схемой, основана на МК Tiny 45.

В данном устройстве не применяется внешний быстродействующий АЦП, и это её существенный недостаток. Это означает, что при измерении сигнала с частотой, на которую наш пробник - осциллограф не рассчитан, мы получим на экране, просто прямую линию… Недавно мне потребовалось провести ремонт пульта дистанционного управления, диагностика показала, что и питание приходит, и дорожки все целые, и контакты на плате, вместе с резиновыми кнопками почищены, все безрезультатно, пульт не подавал признаков жизни. На местном радиофоруме, мне предложили заменить керамический резонатор, на котором кстати не было ни трещин, ни каких других внешних признаков, по которым можно было бы решить, что деталь неисправна. Решил послушать совета, сходил в магазин и купил новый керамический резонатор на 455 кГц, стоимостью всего 5 рублей, перепаял его, и пульт сразу “ожил”.

К чему я это рассказываю? А к тому, что после сборки этого пробника, пришла в голову мысль проверить на пульте генерацию тактового сигнала. Не тут-то было. Пробник-осциллограф показал, на одной ножке резонатора условно низкий уровень, на другой высокий, и вывел прямую линию. Не справившись даже с частотой 455 кГц... Теперь, когда вы предупреждены о его минусах, вы можете сами определиться для себя, нужен ли вам такой осциллографический пробник. Если все же да, то продолжаем чтение)... Входное сопротивление обоих каналов осциллографа равно 1 МОм.

Для этой цели нам будет нужно приобрести и запаять подстроечные резисторы на 1 МОм, делитель сигнала 1\10. Соответственно сопротивления делителя, у нас должны составлять 900 и 100 КилоОм. Я решил использовать 2 канала осциллографа, так как был в наличии разъем - гнезда, распаянные на плате, два тюльпана, и разница в стоимости деталей для меня составляла, по сути, только стоимость подстроечного резистора. Другое дело, что оба канала оказались не идентичны по своим показаниям. Как мы видим на схеме один канал был рассчитан на работу с делителем, а другой нет. Ну да это не беда, если потребуется, чтобы и этот канал работал без делителя, нам достаточно выкрутить положения движка подстроечного резистора в ноль, тем самым подав сигнал с выхода, напрямую на ножку МК. Это может быть полезным при измерении сигналов, на двух линиях с низкой амплитудой. На следующем фото показано, как я снимаю сигнал с мультивибратора:

Также мы можем, покрутив регулятор подстроечного резистора, выставить, какой делитель нам требуется, 1\10, 1\25, 1\50, 1\100, или любой другой, измерив мультиметром сопротивление, между центральным выводом и крайними выводами подстроечного резистора. Это может потребоваться для измерения формы сигнала, с большой амплитудой напряжения. Для этого нужно будет лишь подсчитать, получившиеся соотношения сопротивлений делителя. Есть еще один важный нюанс, на иностранном сайте автора схемы, при выборе фьюзов указано, что нужно перевести фьюз - бит Reset Disable в положение включено. Как мы помним, отключение этого фьюз - бита, прекращает возможность последовательного программирования. Фьюзы которые нужно изменить, показаны на следующем рисунке:

В данной схеме Pin 1 Reset не используется как Pin, поэтому нам изменять этот фьюз-бит не обязательно. Но на одном из форумов, для более стабильной работы осциллографа - пробника, рекомендовали притянуть Pin Reset через резистор 10 килоОм к плюсу питания, что я и сделал. Также, когда искал информацию по нему, ни на одном из сайтов я не нашел понятного и доступного объяснения, насчет источника тактирования МК Tiny 45. Так вот, в этой схеме МК тактируется не от внутреннего RC - генератора, не от кварцевого резонатора, а от внешнего тактового сигнала, подаваемого на МК от USB порта. Логично предположить, что выбрав этот источник тактирования, МК перестанет у нас быть виден, в оболочке для прошивания, при отключении от USB порта, поэтому сначала залейте прошивку, а затем внимательно выставляйте фьюз биты.

Давайте разберем схему осциллографа более подробно, на сигнальных линиях USB порта D+ и D-, установлены согласующие резисторы на 68 Ом. Изменять их номинал не рекомендую. Между сигнальными жилами и землей, рекомендовано для снижения помех, установить керамические конденсаторы на 100 наноФарад. Такой же конденсатор на 100 наноФарад, нужно установить параллельно электролитическому, на 47 микроФарад, установленному по цепям питания +5 вольт и земля. Между землей и сигнальными линиями, должны быть установлены стабилитроны на 3.6 Вольта. Я правда поставил на 3.3 вольта, все работает нормально. Предусмотрена индикация включения на светодиоде, включенном последовательно с резистором 220-470 Ом.

Номинал в данном случае не критичен, и от него зависит только яркость свечения светодиода. Я установил на 330 Ом, яркость свечения достаточная. В схеме установлен резистор номинала 1.5-2.2 килоОма, для определения устройства операционной системой.

Подпаивайте провода USB кабеля к плате ориентируясь по распиновке кабеля, а не по расположению на схеме осциллографа. На схеме очередность следования жил указана произвольно. Также из несущественных недостатков, по отзывам пользовавшихся, после перезагрузки Windows, нам потребуется переткнуть осциллограф заново в USB порт. Не забудьте снять фьюз - бит делитель тактовой частоты на 8 CKDIV 8. Данный осциллограф не требует для своей работы, каких-то сторонних драйверов, и определяется как Hid устройство, аналогично мышке или клавиатуре. При первом подключении, устройство определится как Easylogger. На следующем рисунке, приведен список необходимых для сборки деталей.

Существует 6 версий программы Usbscope, оболочки, в которой собственно мы и наблюдаем график. Первые три версии не поддерживают 64-битные операционные системы Windows. Начиная с четвертой версии Usbscope, поддержка обеспечена. Для работы программы на компьютер должен быть установлен Netframework. На сайте автора были выложены исходники прошивки, и исходники программы-оболочки, так что возможно найдутся умельцы, которые смогут дополнить софт. Какое-же практическое использование данного осциллографа, неужели только как игрушка? Нет, данный прибор используется в автоделе домашними умельцами, как бюджетная замена дорогому осциллографу, для настройки автомобильных систем зажигания, расхода топлива и подобных нужд.

Видимо частота работы в автоделе достаточно низкая, и данного пробника минимально хватает, хотя бы для разовых работ. Для подключения к измеряемой схеме спаял два щупа, использовав для этого, с целью снизить уровень помех, экранированный провод, тюльпаны или разъем RCA. Это обеспечивает легкое подключение и отсоединение щупов от осциллографа.

  1. Один из проводов - щупов осциллографа, оканчивается для измерения щупом от мультиметра для сигнальной жилы, и крокодилом для подключения к земле.
  2. Второй щуп оканчивается крокодилами разных цветов, и для сигнальной жилы и для земли.

Вывод: сборка данного пробника, целесообразна, скорее как наглядное пособие, для изучения формы низкочастотных сигналов. Для практических целей, например для проверки и настройки импульсных блоков питания, в частности работы ШИМ контроллеров, данный пробник не годится однозначно, так как не может обеспечить необходимого быстродействия. Поэтому не может являться заменой, даже самому простому советскому осциллографу, и даже простым осциллографам с Али экспресс.

Скачать архив со схемой, прошивкой, скрином фьюзов и оболочкой осциллографического пробника, можно по ссылке . Всем успехов, специально для - AKV .

Обсудить статью USB ПРОБНИК-ОСЦИЛЛОГРАФ

Этот простой и дешёвый USB осциллограф был придуман и сделан просто ради развлечения. Давным давно довелось чинить какой-то мутный видеопроцессор, в котором спалили вход вплоть до АЦП. АЦП оказались доступными и недорогими, я купил на всякий случай парочку, один пошёл на замену, а другой остался.


Недавно он попался мне на глаза и почитав документацию к нему я решил употребить его для чего-нибудь полезного в хозяйстве. В итоге получился вот такой приборчик. Обошёлся в копейки (ну рублей 1000 примерно), и пару выходных дней. При создании я постарался уменьшить количество деталей до минимума, при сохранении минимально необходимой для осциллографа функциональности. Сначала я решил, что получился какой-то уж больно несерьёзный аппарат, однако, сейчас я им постоянно пользуюсь, потому что он оказался весьма удобным - места на столе не занимает, легко помещается в карман (он размером с пачку сигарет) и обладает вполне приличными характеристиками:

Максимальная частота дискретизации - 6 МГц;
- Полоса пропускания входного усилителя - 0-16 МГц;
- Входной делитель - от 0.01 В/дел до 10 В/дел;
- Входное сопротивление - 1 МОм;
- Разрешение - 8 бит.Принципиальная схема осциллографа показана на рисунке 1.

Для разных настроек и поиска неисправностей во всяких преобразователях питания, схемах управления бытовой техникой, для изучения всяких устройств и т.д., там где не требуются точные измерения и высокие частоты, а нужно просто посмотреть на форму сигнала частотой, скажем, до пары мегагерц - более чем достаточно.

Кнопка S2 - это часть железа нужного для бутлоадера. Если при подключении осциллографа к USB держать её нажатой, то PIC заработает в режиме бутлоадера и можно будет обновить прошивку осциллографа при помощи соответствующей утилиты. В качестве АЦП (IC3) была использована "телевизионная" микросхема - TDA8708A. Она вполне доступна во всяких "Чип и Дип"ах и прочих местах добычи деталей. На самом деле это не только АЦП для видеосигнала, но и коммутатор входов, выравниватель и ограничитель уровней белого - чёрного и т.д. Но все эти прелести в данной конструкции не используются. АЦП весьма шустр - частота дискретизации - 30 МГц. В схеме он работает на тактовой частоте 12 МГц - быстрее не нужно, потому что PIC18F2550 просто не сможет быстрее считывать данные. А чем выше частота - тем больше потребление АЦП. Вместо TDA8708A можно использовать любой другой быстродействующий АЦП с параллельным выводом данных, например TDA8703 или что-нибудь от Analog Devices.

Тактовую частоту для АЦП удалось хитрым образом извлечь из PIC"а - там запущен ШИМ с частотой 12 МГц и скважностью 0.25. Тактовый импульс положительной полярности проходит в цикле Q1 PIC"а так что при любом обращении к порту B, которое происходит в цикле Q2 данные АЦП будут уже готовы. Ядро PIC"а работает на частоте 48 МГц, получаемой через PLL от кварца 4 МГц. Команда копирования из регистра в регистр выполняется за 2 такта или 8 циклов. Таким образом, данные АЦП возможно сохранять в память с максимальной частотой 6 МГц при помощи непрерывной последовательности команд MOVFF PORTB, POSTINC0. Для буфера данных используется один банк RAM PIC18F2550 размером 256 байт.

Меньшие частоты дискретизации реализуются добавлением задержки между командами MOVFF. В прошивке реализована простейшая синхронизация по отрицательному или положительному фронту входного сигнала. Цикл сбора данных в буфер запускается командой от PC по USB, после чего можно эти данные по USB прочитать. В результате PC получает 256 8-битных отсчётов которые может, например, отобразить в виде изображения. Входная цепь проста до безобразия. Делитель входного напряжения без всяких изысков сделан на поворотном переключателе. К сожалению не удалось придумать как передавать в PIC положение переключателя, поэтому в графической морде осциллографа есть только значения напряжения в относительных единицах - делениях шкалы. Усилитель входного сигнала (IC2B) работает с усилением в 10 раз, смещение нуля, необходимое для АЦП (он воспринимает сигнал в диапазоне от Vcc - 2.41В до Vcc - 1.41В) обеспечивается напряжением с программируемого генератора опорного напряжения PIC (CVREF IC1, R7,R9) и делителем от отрицательного напряжения питания (R6,R10, R8). Т.к. в корпусе ОУ был "лишний" усилитель (IC2A), я использовал его как повторитель напряжения смещения.

Не забудьте про емкостные цепочки для частотной компенсации входной ёмкости вашего ОУ и ограничивающих диодов, которые отсутствуют на схеме - нужно подобрать ёмкости параллельно резисторам делителя и резистору R1, иначе частотные характеристики входной цепи загубят всю полосу пропускания. С постоянным током всё просто - входное сопротивление ОУ и закрытых диодов на порядки выше сопротивления делителя, так что делитель можно просто посчитать не учитывая входное сопротивление ОУ. Для переменного тока иначе - входная ёмкость ОУ и диодов составляют значительную величину по сравнению с ёмкостью делителя. Из сопротивления делителя и входной ёмкости ОУ и диодов получается пассивный ФНЧ, который искажает входной сигнал.

Чтобы нейтрализовать этот эффект нужно сделать так, чтобы входная ёмкость ОУ и диодов стала значительно меньше ёмкости делителя. Это можно сделать соорудив емкостной делитель параллельно резистивному. Посчитать такой делитель сложно, т.к. неизвестна как входная ёмкость схемы, так и ёмкость монтажа. Проще его подобрать.

Способ подбора такой:
1. Поставить конденсатор ёмкостью примерно 1000 пФ параллельно R18.
2. Выбрать самый чувствительный предел, подать на вход прямоугольные импульсы с частотой 1 кГц и размахом в несколько делений шкалы и подобрать конденсатор параллельно R1 так, чтобы прямоугольники на экране выглядели прямоугольниками, без пиков или завалов на фронтах.
3. Повторить операцию для каждого следующего предела, подбирая конденсаторы параллельно каждому резистору делителя соответственно пределу.
4. Повторить процесс с начала, и убедиться, что на всех пределах всё в порядке (может проявиться ёмкость монтажа конденсаторов), и, если что-то не так, слегка подкорректировать ёмкости.

Сам ОУ - это Analog Devices AD823. Самая дорогая часть осциллографа. :) Но зато полоса 16 МГц - что весьма неплохо.А кроме того, это первое из шустрого, что попалось в розничной продаже за вменяемые деньги.

Конечно же этот сдвоенный ОУ без всяких переделок можно поменять на что-то типа LM2904, но тогда придётся ограничится сигналами звукового диапазона. Больше 20-30 кГц оно не потянет.

Ну и форму прямоугольных, например, сигналов будет слегка искажать. А вот если удастся найти что-то типа OPA2350 (38МГц) - то будет наоборот замечательно.

Источник отрицательного напряжения питания для ОУ сделан на хорошо известной charge-pump ICL7660. Минимум обвязки и никаких индуктивностей. Ток по выходу -5 В конечно у неё невелик, но нам много и не надо. Цепи питания аналоговой части изолированы от помех цифры индуктивностями и ёмкостями (L2, L3, C5, C6). Индуктивности попались номиналом 180 uГн, вот их и поставил. Никаких помех по питанию даже на самом чувствительном пределе. Прошивка PIC заливается по USB с помощью бутлоадера который сидит с 0-го адреса в памяти программ и запускается если при включении удерживать нажатой кнопку S2. Так что прежде чем прошивать PIC - залейте туда сначала бутлоадер - будет проще менять прошивки.
Исходники драйвера осциллографа для ядер 2.6.X находятся в архиве с прошивкой. Там же есть консольная утилитка для проверки работоспособности осциллографа. Её исходники стоит посмотреть, чтобы разобраться как общаться с осциллографом, если хочется написать для него свой софт.
Программа для компьютера проста и аскетична, ее вид показан на рисунках 2 и 3. Подключить осциллограф к USB и запустить qoscilloscope. Требуется QT4.

Во вложении- все файлы к проекту

Решили мы как-то взять осциллограф другу. Долго думали… Выложить за советскую Цешку тысяч 5-10, либо поднакопить на нормальный фаршированный , который сейчас у меня стоит на

На Авите советские осциллографы стоят почему-то до сих пор очень дорого, а цифровой осциллограф стоит и того дороже. И тут мы подумали: “А почему бы не взять USB осциллограф с Алиэкспресса?” Цена – копейки, функционал почти тот же самый, что и у цифрового осциллографа, да и габариты небольшие. USB осциллограф по сути тоже является цифровым осциллографом, но только с одним отличием – у него нет собственного дисплея.

Почесали репу, пораскинули мозгами… Кризис – надолго. Доллар дешеветь не собирается. Самые лучшие инвестиции – это в приборы и в образование. Ну что же, сказано – сделано. Спустя месяц с лишним пришел вот такой USB осциллограф:


В придачу с ним шли 2 щупа, шнур USB, расходники, диск с ПО, а также отвертка для регулировки щупов


С одной стороны осциллографа мы видим два BNC разъема для подключения щупов, а справа видим два штыря. Эти штыри – генератор тестового сигнала для калибровки щупов осциллографа. Один из них земля, а другой – сигнальный.


Как мы видим на фото, максимальное напряжение, которое мы можем подавать на разъемы BNC – это 30 Вольт, что вполне хватит для начинающего электронщика. Генератор тестового сигнала выдает нам прямоугольный сигнал меандр с частотой в 1 Килогерц и размахом в 2 Вольта.

С другой стороны можно увидеть сигнальный светодиод, сигнализирующий о работе осциллографа, а также вход для USB кабеля, который другим концом цепляется к ПК


В рабочем состоянии все это выглядит как-то так:


Работа осциллографа

После установки программного обеспечения, которое шло на диске, цепляем наш осциллограф. Начинается установка драйверов. Потом запускаем программу. Интерфейс программы проще пареной репки:


Слева само рабочее поле, а справа горизонтальная и вертикальная развертка для первого и второго канала. Есть также волшебная кнопка “AUTO”, которая выдает нам уже готовый сигнал на дисплее.

Далее нажимаем на “CH1”, что означает “первый канал”, так как я подцепился к разъему первого канала. Цепляем щуп к тестовым штырям и подготавливаем осциллограф к работе. Крутим винтик на щупе и добиваемся того, чтобы осциллограмма тестового сигнала была строго прямоугольной


Должно получиться как-то так:


На всех цифровых осциллографах это делается одинаково. Как это сделать, можно прочитать .

Также можно вывести параметры, которые осциллограф сразу бы показывал на мониторе. Это частота, период, среднее значение, среднеквадратичное, напряжение от пика до пика и тд. Про эти параметры можно прочитать в этой статье.


Частота дискретизации

Частота дискретизации – это грубо говоря, с какой частотой осциллограф записывает сигнал. Как вы знаете, осциллограмма – это кривая или прямая линия. Чаще всего кривая. Помните, как на алгебре чертили параболу графика y=x 2 ? Если мы брали 3-4 точки, то у нас график получался с изломами (в красных кружочках)

А если бы брали больше точек, то и график собственно получался правильнее и красивее:

Здесь все то же самое! Только по Х у нас откладывается время, а по Y – напряжение.

Следовательно, чтобы сигнал как можно точнее отображался на дисплее, нужно чтобы этих точек было как можно больше. И чем больше точек, тем лучше и правильнее отображается форма сигнала. В этом плане абсолютную победу одерживают .

Для того, чтобы было как можно больше точек, частота дискретизации должна быть как можно больше. Также частоту дискретизации чаще всего называют частотой сэмплирования . Sample с англ. – выборка. На каждом цифровом осциллографе эта частота сэмплирования указывается прямо на его корпусе. Указывается она в МегаСэмплах, что значит миллион сэмплов. У этого USB осциллографа максимальная частота сэмплирования составляет 48 МегаСэмплов в секунду (48MSa/s) Это означает, что за 1 секунду сигнал прорисовывается (состоит) из 48 миллионов точек. Вот теперь скажите мне, у какого осциллографа будет самый правильный сигнал? У с частотой дискретизации в 500 МSa/s или у нашего героя статьи в 48MSa/s ? То-то же)

Полоса пропускания

Полоса пропускания – это максимальная частота, после которой осциллограф начинает показывать искажение сигнала. На данном USB осциллографе заявленная полоса пропускания равняется 20 Мегагерц. Если мы будем замерять сигналы более, чем за 20 Мегагерц, то у нас сигналы будут искажаться по амплитуде. Хотя на деле этот USB осциллограф выдает максимум 3 Мегагерца без искажения. Это маловато.

Плюсы осциллографа

  1. Умеренная цена и функционал. Стоит в разы дешевле, чем крутые цифровые осциллографы
  2. Настройка и установка ПО занимает около 10-15 минут
  3. Удобный интерфейс
  4. Малогабаритный размер
  5. Может производить операции как с постоянным, так и с переменным током
  6. Два канала, то есть можно измерять сразу два сигнала и выводить их на дисплей

Минусы осциллографа

  1. Малая частота дискретизации. Небольшое лирическое отступление…
  2. Обязательно нужен ПК
  3. Малая полоса пропускания
  4. Глубина памяти тоже никакая

Вывод

После цифрового осциллографа OWONa этот USB осциллограф чувствуется гламурной какашкой. Не хочу сказать, что он вообще плохой и лучше его не покупать. Он очень даже хорош собой и умеет выдавать осциллограмму по заявленным характеристикам типа до 20 Мегагерц, но на самом деле в разы меньше. Обошелся он нам чуть меньше 4000 руб. Если бы он стоил в районе 1000-2000 руб, то он стоил бы своих денег. В принципе, для начинающих электронщиков этот осциллограф будет более-менее нормальным решением. Для средних и профи электронщиков скажу сразу: “Копите деньги на нормальный цифровой осциллограф!”

Вот также небольшой видеообзор от Паяльника:

Более подробно про то, как выбрать осциллограф и на какие параметры следует обратить внимание, читайте в этой статье.

Измерительная техника

Карманный осциллограф до 1 МГц

Заменив в карманном осциллографе, описанном в , микроконтроллер PIC16F873A на PIC18F4550 , а операционный усилитель К140УД608 на микросхему аналогового видеоинтерфейса ТDA8708A , удалось уменьшить длительность развёртки в 150 раз, до 21 мкс на всю ширину экрана, а максимальную частоту входного сигнала увеличить до 1 МГц. Это значительно расширило возможности осциллографа.

Основные технические характеристики

Напряжение отклонения луча на всю высоту экрана, В................0,2; 1; 3; 10; 30; 100

Максимальная частота исследуемого сигнала, МГц........1

Длительность горизонтальной развёртки, мкс.......21, 170, 1000, 10-103, 30-103, 100-103, 300-103, 106

Разрешение экрана, пкс......128x64

Напряжение питания, В............5

Потребляемый ток, мА...........115

Размеры, мм..............80x62x30

Масса, г........................110

Схема осциллографа изображена на рис. 1. Входной сигнал поступает на вывод 20 (ADCIN - вход АЦП) микросхемы DA1 (TDA8708A). Для запуска её АЦП микроконтроллер DD1 формирует на выводе 17 тактовые импульсы. Двоичные коды отсчётов сигнала поступают на порт В микроконтроллера DD1, который согласно программе записывает их в оперативную память, а затем отображает на графическом ЖКИ HG1 в виде осциллограммы. Общее описание ЖКИ МТ-12864J-2FLA можно найти в , а о его использовании прочитать в .

Рис. 1. Схема осциллографа

На рис. 2 изображена осциллограмма сигнала частотой 100 кГц. Переменным резистором R6 смещают линию развёртки по вертикали, устанавливая её в наиболее удобное для наблюдения осциллограммы положение. Подборкой резистора R12 добиваются наилучшей контрастности изображения на экране ЖКИ.

Рис. 2. Осциллограмма сигнала частотой 100 кГц

Развёртка осциллографа работает в режиме однократного запуска нажатием на кнопку SB1. Нажимая на кнопку SB2, изменяют длительность развёртки. После каждого нажатия этой кнопки на экран некоторое время выводится значение новой длительности развёртки (рис. 3).

Рис. 3. Значение новой длительности развёртки

Программу микроконтроллера можно скачать .

Литература

1. Пичугов А. Карманный осциллограф.- Радио, 2013, № 10, с. 20, 21.

2.PIC18F2455/2550/4455/4550 Data Sheet. - URL: http://ww1.microchip.com/downloads/ en/DeviceDoc/39632e.pdf (22.04.15).

3. Яценков В. С. Микроконтроллеры Microchip с аппаратной поддержкой USB. - М.: Радио и связь, 2008.

4. TDA8708A. Video analog input interface. - URL: http://doc.chipfind.ru/pdf/philips/tda 8708a.pdf (21.05.15).

5. Жидкокристаллический модуль MT-12864J. - URL: http://www.melt.com.ru/ files/file2150172.5.pdf (22.04.15).

6. Милевский А. Использование графического ЖКИ МТ-12864А с микроконтроллером фирмы Microchip. - Радио, 2009, № 6, с. 28-31.


Дата публикации: 06.11.2015

Мнения читателей
  • admin / 18.04.2017 - 14:35
    Проблема на фтп сервере, откуда идет раздача. Я думаю это временное явление, попробуйте чуть позже скачать.