Максимальное количество контуров теплого пола. Методические рекомендации по расчётам для обустройства теплого пола

Прокладка труб обогрева под покрытием пола считается одним из лучших вариантов отопления дома или квартиры. Они потребляют меньше ресурсов для поддержания указанной температуры в комнате, превышают стандартные настенные радиаторы по уровню надежности, равномерно распределяют тепло в помещении, а не создают отдельные «холодные» и «горячие» зоны.

Длина контура водяного теплого пола - важнейший параметр, который необходимо определить до начала монтажных работ. От него зависит будущая мощность системы, уровень нагрева, выбор комплектующих и конструктивных узлов.

Варианты укладки

Строителями используются четыре распространенных схемы укладки труб, каждая из которых лучше подходит для использования в помещении различной формы. От их «рисунка» в немалой степени зависит максимальная длина контура теплого пола. Это:

  • «Змейка». Последовательная укладка, где горячая и холодна линия, идут друг за другом. Подходит для помещений вытянутой формы с разделением на зоны различной температуры.
  • «Двойная змейка». Применяется в прямоугольных комнатах, но без зонирования. Обеспечивает равномерное прогревание площади.
  • «Угловая змейка». Последовательная система для помещения с равной длиной стен и наличием зоны низкого прогревания.
  • «Улитка». Сдвоенная система прокладывания, подходящая для приближенных к квадрату форм комнат без холодных участков.

Выбранный вариант укладки оказывает влияние на максимальную длину водяного пола, потому что меняется количество петель труб и радиус изгиба, который также «съедает» определенный процент материала.

Расчет длины

Максимальная длина трубы теплого пола для каждого контура рассчитывается отдельно. Чтобы получить необходимое значение понадобится следующая формула:

Ш*(Д/Шу)+Шу*2*(Д/3)+К*2

Значения указываются в метрах и означают следующее:

  • Ш - ширина комнаты.
  • Д - длина помещения.
  • Шу - «шаг укладки» (расстояние между петлями).
  • К - расстояние от коллектора до точки соединения с контурами.

Полученная в результате вычислений длина контура теплого пола дополнительно увеличивается на 5%, куда входит небольшой запас на нивелирование ошибок, изменение радиуса сгибания трубы и соединение с фитингами.

В качестве примера расчета максимальной длины трубы для теплого пола на 1 контур возьмем помещение в 18 м2 со сторонами в 6 и 3 м. Расстояние до коллектора составляет 4 м, а шаг укладки 20 см, получается следующее:

3*(6/0,2)+0,2*2*(6/3)+4*2=98,8

К результату добавляется 5%, что составляет 4,94 м и рекомендуемая длина контура водяного теплого пола увеличивается до 103,74 м, которые округляются до 104 м.

Зависимость от диаметра труб

Второй по важности характеристикой является диаметр используемой трубы. Она напрямую влияет на максимальное значение длины, количество контуров в помещении и мощность насоса, который отвечает за циркуляцию теплоносителя.

В квартирах и домах со средним размером комнат используются трубы 16, 18 или 20 мм. Оптимальным для жилых помещений является первое значение, оно сбалансировано в плане затрат и производительности. Максимальная длина контура водяного теплого пола 16 трубой составляет 90-100 м в зависимости от выбора материала трубы. Превышать этот показатель не рекомендуется, потому что может образоваться так называемый эффект «запертой петли», когда, вне зависимости от мощности насоса движение теплоносителя в коммуникации прекращается из-за высокого сопротивления жидкости.

Чтобы выбрать оптимальное решение и учесть все нюансы, лучше обратиться к нашему специалисту за консультацией.

Количество контуров и мощность

Монтаж системы отопления должен соответствовать следующим рекомендациям:

  • Одна петля на помещение небольшой площади или часть большого, растягивать контур на несколько комнат нерационально.
  • Один насос на коллектор, даже если заявленной мощности достаточно на обеспечение двух «гребенок».
  • При максимальной длине трубы теплого пола 16 мм в 100 м коллектор устанавливается не более чем на 9 петель.

Если максимальная длина петли теплого пола 16 трубы превышает рекомендованное значение, то помещение разбивается на отдельные контуры, которые соединяются в одну отопительную сеть коллектором. Чтобы обеспечить равномерное распределение теплоносителя по всей системе, специалисты советуют не превышать разницу между отдельными петлями в 15 м, иначе меньший контур прогреется гораздо сильнее, чем больший.

Но что делать, если длина контура теплого пола 16 мм трубы различается на значение, которое превышает 15м? Поможет балансировочная арматура, которая изменяет циркулирующее по каждой петле количество теплоносителя. С ее помощью разница длин может составлять почти два раза.

Температура в комнатах

Также длина контуров теплого пола для 16 трубы оказывает влияние на уровень нагрева. Для поддержания комфортной среды в помещении нужна определенная температура. Для этого прокачиваемая в системе вода нагревается до 55-60 °C. Превышение этого показателя может пагубно сказаться на целостности материала инженерных коммуникаций. В зависимости от назначения комнаты в среднем получаем:

  • 27-29 °C для жилых комнат;
  • 34-35 °C в коридорах, прихожих и проходных помещениях;
  • 32-33 °C в комнатах с повышенной влажностью.

В соответствии с максимальной длиной контура теплого пола 16 мм в 90-100 м разница на «входе» и «выходе» смесительного котла не должна превышать 5 °C, иное значение свидетельствует о теплопотере на отопительной магистрали.

«Теплые полы» давно уже не воспринимаются как некая экзотика – все больше хозяев домов обращаются к этой технологии обогрева своих жилых владений. Такая система может полностью брать на себя функцию полноценного отопления жилья, или работать в тандеме с классическими отопительными приборами – или конвекторами. Естественно, эти особенности учитываются заранее, на этапе общего проектирования.

Предложений по разработке проектов, монтажу и отладке систем - больше чем достаточно. И все же многие владельцы домов, по старой доброй традиции, стремятся все выполнить своими руками. Но такие работы «на глаз» все же не делаются – так или иначе, требуется проведение расчетов. И одним из ключевых параметров является общая допустимая длина труб одного контура.

А так как в условиях обычного среднестатистического частного жилого дома, как правило, для укладки вполне достаточно трубы диаметром 16 мм, то именно на нем и остановимся. Итак, рассматриваем вопрос, какова может быть максимальная длина контура теплого пола 16 трубой.

Почему лучше использовать трубу с внешним диаметром 16 мм?

Для начала – почему рассматривается именно труба 16 мм?

Всё очень просто – практика показывает, что для «тёплых полов» в доме или квартире такого диаметра вполне достаточно. То есть сложно представить ситуацию, когда контур не справится со своей задачей. А значит — нет никаких действительно оправданных оснований применять более крупную, 20-миллиметровую.


И, вместе с тем, применение именно 16-миллиметровой трубы дает ряд преимуществ:

  • Прежде всего, она примерно на четверть дешевле 20-миллиметрового аналога. То же самое касается и всей необходимой фурнитуры – тех же фитингов.
  • Такие трубы более просты в укладке, с ними можно, при необходимости, выполнить уплотненный шаг раскладки контура, вплоть до 100 мм. С 20-миллиметровой трубой и возни намного больше, и малый шаг – бывает просто невозможен.

  • Существенно уменьшается объем теплоносителя в контуре. Простой подсчет показывает, что в погонном метре 16-мм трубы (при толщине стенок 2 мм внутренний канал составляет 12 мм) вмещается 113 мл воды. А в 20-мм (внутренний диаметр 16 мм) - 201 мл. То есть разница – более 80 мл на всего один метр трубы. А в масштабах системы отопления всего дома - это в буквальном смысле слова выливается в очень приличное количество! И ведь надо обеспечить нагрев этого объема, что влечет, в принципе, неоправданные расходы на энергоносители.
  • Наконец, труба с большим диаметр потребует и увеличения толщины бетонной стяжки. Хочешь – не хочешь, но минимум 30 мм над поверхностью любой трубы придётся обеспечивать. Пусть не кажутся смешными эти «несчастные» 4–5 мм. Тот, кто занимался заливкой стяжки, знает, что эти миллиметры оборачиваются десятками и сотнями килограмм дополнительного бетонного раствора - всё зависит от площади. Тем более что для трубы 20 мм рекомендуют слой стяжки делать даже толще – порядка 70 мм над контуром, то есть она получается чуть ли не вдвое толще.

Кроме того, в жилых помещениях очень часто «идет борьба» за каждый миллиметр высоты пола – просто из соображений недостаточности «простора» для наращивания толщины общего «пирога» системы подогрева.


Труба 20-мм оправдана, когда необходимо выполнить систему подогрева пола в помещениях с высокой нагрузкой, с большой интенсивностью движения людей, в спортзалах и т.п. Там просто из соображений повышения прочности основания приходится применять более массивные толстые стяжки, для прогрева которых требуется и большая площадь теплообмена, что как раз и обеспечивает труба 20, и иногда даже и 25 мм. В жилых же помещениях прибегать к таким крайностям – нет никакой необходимости.

Могут возразить, что для того, чтобы «продавить» теплоноситель по более тонкой трубе придется наращивать мощностные показатели циркуляционного насоса. Теоретически, так оно и есть – гидравлическое сопротивление с уменьшением диаметра, понятно, возрастает. Но как показывает практика, большинство циркуляционных насосов вполне справляются с этой задачей. Ниже будет уделено внимание этому параметру – он также увязан с длиной контура. На то и проводятся расчеты, чтобы добиться оптимальных или, по крайней мере, приемлемых, вполне работоспособных показателей системы.

Итак, остановимся на трубе именно 16 мм. Про сами трубы в этой публикации разговор вести не будем – на то есть отдельная статья нашего портала.

Какие трубы оптимальны для водяного «теплого пола»?

Далеко не все изделия подойдут для создания системы подогрева пола. Трубы вмуровываются в стяжку на многие годы, то есть к их качеству и эксплуатационным характеристикам предъявляются особые требования. Как подобрать - читайте в специальной публикации нашего портала.

Как определиться с длиной контура?

Вопрос кажется совершенно несложным. Дело в том, что в интернете можно отыскать массу рекомендаций по этому поводу – и от производителей труб, и от опытных мастеров, и от, скажем честно, абсолютных дилетантов, которые просто «передирают» информацию с других ресурсов, особо не вдаваясь в тонкости.

Так, в инструкциях по монтажу, которыми производители часто сопровождают свои изделия, можно встретить установленный предел длины контура для трубы 16 мм достигает 100 метров. В других публикациях показывается граница в 80 метров. Опытные установщики рекомендуют ограничиться длиной в 60÷70 метров.

Казалось бы, чего еще нужно?

Но дело в том, что показатель длины контура, тем более с размытым определением «максимальной длины», очень сложно рассматривать в отрыве от других параметров системы. Выложить контур «на глазок», просто чтобы не превысить рекомендуемых границ – дилетантский подход. И при таком отношении вполне можно вскорости столкнуться с глубокими разочарованиями в работе системы. Стало быть, лучше оперировать не абстрактной «допустимой» длиной контура, а оптимальной, соответствующей конкретным условиям.

А она зависит (если точнее – не столь зависит, сколько тесно взаимосвязана) от массы других параметров системы. Сюда можно отнести площадь помещения, его предназначение, расчётный уровень его теплопотерь, ожидаемую температуру в комнате – всё это позволит определиться с шагом укладки контура. И только потом можно будет судить о его получающейся длине.

Вот и постараемся «распутать этот клубок» чтобы прийти к оптимальной длине контура. А затем – проверим правильность наших расчетов.

Несколько основных требований к параметрам «теплого пола»

Прежде чем приступать к расчетам, необходимо ознакомиться с некоторыми требованиями, которым должна соответствовать система водяного подогрева полов.

  • «Теплый пол» может выступать в качестве основной системы отопления, то есть полностью обеспечивать комфортный микроклимат в помещениях дома и компенсацию тепловых потерь. Другой вариант, более рациональный – он выступает в качестве «помощника» обычным радиаторам или конвекторам, принимая на себя определенную долю в общей работе системы, повышая общую комфортность в доме. В этом случае расчет должен проводиться в тесной взаимосвязи – хозяева должны заранее определиться, в каком соотношении будет работать общая система. Например, 60% берет на себя высокотемпературная система радиаторов, а остальное отдано контурам «теплого пола». Он может использоваться и автономно, например, поддерживая комфорт в помещениях в межсезонье, когда еще (или уже) нет смысла «гонять на полную» всю систему отопления.

  • Температура теплоносителя на подаче в «теплый пол» ограничивается – максимум 55 градусов. Перепад температур на входе и в обратке должен находиться в диапазоне от 5 до 15 градусов. Нормальным считается падение на 10 градусов (оптимально желательно доводить до 5 — 7).

Обычно принимают в расчет следующие режимы работы.

Таблица режимов работы водяного «теплого пола»

  • Существуют довольно жесткие ограничения по максимальной температуре поверхности «теплого пола». Перегрев полов не допускается по целому ряду причин. Это и некомфортные ощущение для ног человека, и сложности с созданием оптимального микроклимата, и возможная порча финишного покрытия.

Установлены следующие предельные значения нагрева поверхности для различных помещений:

  • Перед началом расчетов желательно сразу составить примерную схему раскладки контура в помещении. Существуют две основных схемы укладки труб – «змейка» и «улитка» со множественными вариациями.

А – обычная «змейка»;

Б – двойная «змейка»;

В – угловая «змейка»;

Г – «улитка».

Обычная «змейка» выкладывается вроде бы проще, но в ней получается слишком много поворотов на 180 градусов, что увеличивает гидравлическое сопротивление контура. Кроме того, при такой раскладке явно может ощущаться перепад температуры от начала контура к концу – это хорошо показано на схеме изменением цвета. Недостаток можно устранить укладкой двойной змейки, но такой монтаж уже выполнить сложнее.

В «улитке» тепло распределяется более равномерно. Кроме того, преобладают повороты на 90 градусы, что снижает потери напора. Но укладывать такую схему все же сложнее, особенно если нет опыта в подобных работах.

Сам контур может занимать не всю площадь комнаты – нередко трубы не прокладывают в тех местах, где планируется установка стационарной мебели.

Впрочем, многие мастера критикуют такой подход. Стационарность мебели – величина все же довольно условная, а «теплый пол» закладывается на десятилетия. Кроме того, чередование холодных и нагретых зон – явление нежелательное хотя бы с точки зрения возможного появления со временем очагов сырости. В отличие от электрических систем, водяным полам локальный перегрев из-за закрытых участков не грозит, так что с этой стороны опасений быть не должно.

Так что строгих рамок на этот счет не существует. Можно, в целях экономии материала, оставить незаполненные участки, или же проложить контур полностью по всей площади. Но если на каком-то участке планируется установка предметов мебели или сантехнических устройств, требующих крепления к полу (например, крепление унитаза дюбелями или анкерами), то это место, естественно, остается свободным от контура. Просто велика вероятность повредить трубу при установке крепежа.

Какую схему укладки контура лучше выбрать?

Более подробно о выборе схем укладки, с теоретическими обоснованиями, рассказывается в отдельной статье нашего портала

  • Шаг укладки труб может быть от 100 до 300 мм (обычно он кратен 50 мм, но это не догма). Меньше 100 мм выполнить нет ни возможности, ни необходимости. А при шаге более 300 мм может ощущаться «эффект зебры», то есть чередование теплых и холодных полос.

А вот какой шаг станет оптимальным – покажут расчеты, так как он тесно связан с ожидаемой теплоотдачей пола и температурным режимом системы.

  • Еще одна оговорка – все последующие теплотехнические расчеты показаны для оптимальных размеров «пирога» системы подогрева пола.

Выше говорилось, что толщина стяжки минимально должна быть 300 мм над поверхностью труб. Но для обеспечения полноценного аккумулирования и равномерного распределения тепла рекомендуется придерживаться толщины в 45-50 мм (именно для трубы диаметром 16 мм).

Узнайте, как правильно сделать , выбрать смеси, приготовить раствор, а также ознакомьтесь с технологией заливки водяного и электрического теплого пола.

А чтобы выработанное тепло не расходовалось впустую на прогрев межэтажного перекрытия или иного основания «теплого пола», под трубным контуром в обязательном порядке предусматривается термоизоляционный слой. Обычно для этого используется пенополистирол с плотностью порядка 35 кг/м³ (лучше – экструдированный, как более прочный и эффективный). Минимальная толщина, обеспечивающая корректную работу «теплого пола» должна составлять:

Особенности основания «теплого пола» Минимальная толщина термоизоляционной «подушки»
Пол по перекрытию над отапливаемым помещением, температура в котором ˃ 18 °С 30 мм
50 мм
Пол по перекрытию над отапливаемым помещением, температура в котором от 10 до 17 °С 70 мм
Пол по грунту, в том числе и в подвальных или цокольных помещениях с заглублением от уровня земли до 1500 мм. 120 мм
Пол в подвальных или цокольных помещениях с заглублением от уровня земли более 1500 мм 100 мм

Обязательное условие — система подогрева полов должна укладываться на тщательно утепленную основу, иначе тепло будет расходоваться крайне неэффективно

Все эти последние замечания были сделаны потому, что последующие расчеты будут справедливы именно для таких рекомендуемых «идеальных» условий.

Проведение расчетов основных параметров контура

Чтобы уложить контур труб с оптимальным шагом (а от этого впоследствии и будет зависеть его общая длина), необходимо для начала выяснить, какая теплоотдача ожидается от системы. Лучше всего это показывает удельная плотность теплового потока g , рассчитанная на единицу площади пола (Вт/м²). С этого и начнем.

Расчет удельной плотности теплового потока «теплого пола»

Рассчитать эту величину, в принципе, несложно – надо лишь разделить потребное количество тепловой энергии, необходимое для восполнения теплопотерь помещения, на площадь «тёплого пола». Имеется в виду не вся площадь комнаты, а именно «активная», то есть задействованная в системе подогрева, на которой будет проводиться раскладка контура.

Безусловно, если «теплый пол» будет работать в связке с обычной системой отопления, то это тоже сразу учитывается – берется лишь планируемая процентная доля от общей тепловой мощности. Например, для обогрева комнаты (восполнения теплопотерь) требуется 1.5 кВт, и при этом доля участия «теплого пола» подразумевается в 60 %. Значит, при расчете удельной плотности теплового потока оперируем значением 1,5 кВт × 0,6 = 0,9 кВт

Откуда взять показатель общей необходимой мощности для восполнения тепловых потерь? Встречается немало рекомендаций исходить из соотношения 1 кВт энергии на 10 м² площади помещения. Однако, такой подход получается уж слишком приближенным, не учитывающим массу важных внешних факторов и особенностей комнаты. Поэтому лучше провести более тщательный расчет. Не пугайтесь – с нашим калькулятором это особого труда не представит.

Калькулятор расчета удельного теплового потока «теплого пола»

Расчет проводится для конкретного помещения.
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках.

Нажмите «РАССЧИТАТЬ УДЕЛЬНУЮ ПЛОТНОСТЬ ТЕПЛОВОГО ПОТОКА»

Общие сведения о помещении и системе теплого пола

Площадь помещения, м²

100 Вт на кв. м

Активная площадь, т.е. отводимая под укладку теплого пола, м²

Степень участия теплого пола в общей системе отопления комнаты:

Сведения, необходимые для оценки количества тепловых потерь комнаты

Высота потолка в помещении

До 2,7 м 2,8 ÷ 3,0 м 3,1 ÷ 3,5 м 3,6 ÷ 4,0 м более 4,1 м

Количество внешних стен

Нет одна две три

Внешние стены смотрят на:

Положение внешней стены относительно зимней «розы ветров»

Уровень отрицательных температур воздуха в регионе в самую холодную неделю года

35 °С и ниже от - 30 °С до - 34 °С от - 25 °С до - 29 °С от - 20 °С до - 24 °С от - 15 °С до - 19 °С от - 10 °С до - 14 °С не холоднее - 10 °С

Какова степень утепленности внешних стен?

Средняя степень утепления Внешние стены имеют качественное утепление

Что расположено снизу?

Холодный пол по грунту или над неотапливаемым помещением Утепленный пол по грунту или над неотапливаемым помещением Снизу расположено отапливаемое помещение

Что расположено сверху?

Холодный чердак или неотапливаемое и не утепленное помещение Утепленный чердак или иное помещение Отапливаемое помещение

Тип установленных окон

Количество окон в помещении

Высота окна, м

Ширина окна, м

Двери, выходящие на улицу или на холодный балкон:

Пояснения по выполнению расчета

Вначале программа запрашивает общие данные о помещении и о системе «теплого пола».

  • Первым делом необходимо указать площадь помещения (участка помещения), в котором будет укладываться контур. Кроме того, если контур укладывается не полностью по всей комнате, следует указать так называемую активную площадь, то есть только того участка, который отведен «тёплому полу».
  • Следующий параметр – это процентная доля участия «теплого пола» в общем процессе восполнения тепловых потерь, если его работа планируется совместно с «классическими» отопительными приборами.
  • Высота потолков.
  • Количество внешних стен, то есть контактирующих с улицей или неотапливаемыми помещениями.
  • Свои поправки может внести тепло солнечных лучей – это зависит от расположения внешних стен относительно сторон света.
  • Для местностей, где явно выражено преобладание направления зимних ветров, модно указать расположение внешних стен относительно направления ветра.
  • Минимальный уровень температуры в самую холодную декаду внесет коррективы на климатические особенности региона. Важно – температуры должны быть именно нормальными, не выходящими за среднестатистические нормы для данного региона.
  • Под полноценным утеплением понимается система термоизоляции, выполненная в полном объеме на основании проведенных теплотехнических расчетов. Если допущены упрощения, то следует принимать значение «средней степени утепленности».
  • Соседство помещения сверху и снизу позволит оценить степень теплопотерь через полы и перекрытия.
  • Качество, количество и размеры окон также напрямую влияют на общий объем тепловых потерь
  • Если в помещении есть дверь, выходящая на улицу или в неотапливаемое помещение, и ею регулярно пользуются, то это лишняя лазейка для холода, которая требует определённой компенсации.

Итоговое значение удельной плотности теплового потока калькулятор покажет в ваттах на квадратный метр.

Определение оптимального теплового режима и шага укладки контура

Теперь, когда имеется значение плотности теплового потока, можно рассчитать и оптимальный шаг укладки для достижения требуемой температуры на поверхности пола, в зависимости от выбранного температурного режима системы, требуемой температуры в помещении и типа напольного покрытия (так как покрытия довольно значительно различаются своей теплопроводностью).

Не будем приводить здесь череду довольно громоздких формул. Ниже представлены четыре таблицы, в которых указаны результаты расчетов для контура с трубой диаметром 16 мм, и с оптимальными параметрами «пирога» системы, о которых говорилось выше.

Таблицы взаимосвязи величины теплового потока (g), температурного режима «теплого пола» (tв/tо), ожидаемой температуры в помещении (tк) и шага укладки труб контура, в зависимости от планируемого финишного напольного покрытия.

Таблица 1. Покрытие – тонкий паркет, ламинат или тонкий синтетический ковер.

(Сопротивление теплопередаче R ≈ 0,1 м²×К/Вт)

g tп g tп g tп g tп g tп
50 12 126 23.3 110 21.8 98 20.8 91 20.1 84 19.5
16 113 26.1 98 24.8 88 23.9 81 23.3 76 22.8
18 106 27.5 92 26.2 83 25.4 76 24.8 71 24.3
20 100 28,9 97 27,8 78 27,0 72 26,4 67 26,0
25 83 32,4 72 31,4 65 30,8 60 30,3 56 30,0
45 12 110 21,8 96 20,5 86 19,7 79 19,1 74 18,6
16 97 24,7 84 23,5 76 22,8 70 22,2 65 21,8
18 90 26,0 78 25,0 70 24,3 65 23,8 60 23,4
20 83 27,4 72 26,4 65 25,8 60 25,3 56 25,0
25 67 31,0 58 30,2 52 29,7 48 29,3 45 29,0
40 12 93 20,3 81 19,2 73 18,5 67 18,0 62 17,6
16 80 23,1 70 22,2 62 21,6 58 21,1 54 20,8
18 73 24,5 64 23,7 57 23,1 53 22,7 49 22,4
20 67 26,0 58 25,2 52 24,7 48 24,3 45 24,0
25 50 29,5 44 28,9 39 28,5 36 28,2 34 28,0
35 12 77 18,9 67 18,0 60 17,4 55 17,0 52 16,6
16 63 21,6 55 20,9 49 20,4 45 20,1 42 19,8
18 57 23,1 50 22,4 44 22,0 41 21,7 38 21,4
20 50 24,5 44 23,9 39 23,5 36 23,3 34 23,0
25 33 27,5 29 27,6 26 27,3 24 27,1 22 27,0

Таблица 2. Покрытие – толстый паркет, толстый синтетический или натуральный ковер.

(Сопротивление теплопередаче R ≈ 0,15 м²×К/Вт)

Средняя температура в контуре tc, °С, (температурный режим подача-обратка, tв/tо, °С) Ожидаемая температура в помещении tк, °С Значения величины теплового потока g (Вт/м²) и средней температуры поверхности пола tп (°С), в зависимости от шага укладки труб контура В (м)
g tп g tп g tп g tп g tп
50 12 103 22,1 89 20,2 82 19,3 77 18,9 69 18,2
16 93 24,3 80 23,2 73 22,6 69 22,2 62 21,5
18 87 25,8 75 24,7 69 24,2 65 23,8 58 23,2
20 82 27,3 71 26,3 65 25,8 61 25,4 55 24,9
25 68 31,1 59 30,3 57 29,8 51 25,9 46 29,1
45 12 90 20,1 78 19,0 72 18,4 67 18,0 61 17,4
16 80 23,1 69 22,1 63 21,6 59 21,3 53 20,8
18 74 24,6 64 23,7 59 23,2 55 22,9 50 22,4
20 68 26,1 59 25,3 54 24,8 51 24,5 46 24,1
25 55 25,9 48 29,2 44 28,9 41 28,6 37 28,3
40 12 76 18,8 66 17,9 60 17,4 57 17,1 51 16,6
16 66 21,9 57 21,1 52 20,6 49 20,4 44 19,9
18 60 23,3 52 22,6 47 22,2 45 22,0 40 21,6
20 55 24,9 48 24,2 44 23,9 41 23,6 37 23,3
25 41 28,7 36 28,7 33 27,9 31 27,7 28 27,5
35 12 63 17,6 55 17,6 50 16,5 47 16,2 42 15,8
16 52 20,6 45 20,6 41 19,7 38 19,4 35 19,1
18 47 22,2 40 22,2 37 21,3 35 21,1 31 20,8
20 41 23,7 36 23,7 33 22,9 31 22,7 28 22,5
25 27 27,4 23 27,4 21 26,9 20 26,8 18 26,6

Таблица 3. Покрытие – синтетический линолеум.

(Сопротивление теплопередаче R ≈ 0,075 м²×К/Вт)

Средняя температура в контуре tc, °С, (температурный режим подача-обратка, tв/tо, °С) Ожидаемая температура в помещении tк, °С Значения величины теплового потока g (Вт/м²) и средней температуры поверхности пола tп (°С), в зависимости от шага укладки труб контура В (м)
g tп g tп g tп g tп g tп
50 12 150 25,8 131 23,7 131 23,7 107 21,6 98 20,8
16 134 28,0 118 26,5 118 26,5 96 24,6 88 23,9
18 126 29,3 110 27,8 110 27,0 90 26,0 83 25,4
20 119 30,6 104 29,3 104 28,5 85 27,6 78 27,0
25 99 30,8 86 32,7 86 32,0 71 31,3 65 30,8
45 12 131 23,7 114 22,0 114 21,3 94 20,3 86 19,7
16 115 26,3 101 25,0 101 24,2 82 23,3 79 22,8
18 107 27,0 94 26,4 94 25,6 77 24,8 70 24,3
20 99 29,8 86 27,7 86 27,0 71 26,3 65 25,8
25 80 32,1 70 31,3 70 30,7 57 30,1 52 29,7
40 12 110 21,9 97 20,6 97 19,9 79 19,1 73 18,5
16 95 24,5 83 23,4 83 22,8 68 22,1 62 21,6
18 87 25,8 76 24,8 76 24,2 62 23,5 57 23,1
20 80 27,1 70 26,2 70 25,7 57 25,1 52 24,7
25 60 30,3 52 29,6 52 29,2 43 26,8 39 28,5
35 12 92 20,2 80 19,2 80 18,5 65 17,8 60 17,4
16 75 22,7 66 21,9 66 21,3 54 20,8 49 20,4
18 68 24,1 59 23,3 59 22,8 48 22,3 44 22,0
20 60 25,3 52 24,6 52 24,2 53 23,8 39 23,0
25 39 28,5 34 28,1 34 27,8 28 27,5 26 27,3

Таблица 4. Покрытие – керамическая плитка, керамогранит, натуральный камень и т.п.

(Сопротивление теплопередаче R ≈ 0,02 м²×К/Вт)

Средняя температура в контуре tc, °С, (температурный режим подача-обратка, tв/tо, °С) Ожидаемая температура в помещении tк, °С Значения величины теплового потока g (Вт/м²) и средней температуры поверхности пола tп (°С), в зависимости от шага укладки труб контура В (м)
g tп g tп g tп g tп g tп
50 12 202 30,0 176 27,7 164 26,6 142 24,7 128 23,4
16 181 32,2 158 30,1 147 29,1 128 27,4 115 26,3
18 170 33,2 148 31,2 138 30,3 120 28,7 108 27,6
20 160 34,3 140 32,5 130 31,6 113 30,1 102 29,1
25 133 36,9 116 35,4 108 34,6 94 33,4 85 32,6
45 12 176 27,7 154 25,8 143 24,8 124 23,1 112 22,0
16 181 29,8 136 28,1 126 27,3 110 25,8 99 24,8
18 144 30,8 126 29,3 117 28,4 102 27,1 92 26,2
20 133 31,9 116 30,4 108 29,6 94 28,4 85 27,6
25 107 34,6 94 33,4 87 32,8 76 31,8 68 31,1
40 12 149 25,3 130 23,6 121 22,8 105 21,4 95 20,5
16 128 27,4 112 26,0 104 25,3 90 24,0 82 23,3
18 117 28,4 101 27,1 95 26,5 82 25,3 74 24,6
20 107 29,6 94 28,4 87 27,8 76 26,8 68 26,1
25 80 32,1 70 31,3 65 30,8 57 30,1 51 29,6
35 12 123 23,0 108 21,6 100 20,9 87 19,8 78 19,0
16 101 25,0 88 23,9 82 23,3 71 22,3 64 21,7
18 91 26,1 80 25,1 74 24,6 64 23,7 58 32,2
20 80 27,1 70 26,3 65 25,8 57 25,1 51 24,6
25 53 29,7 46 29,1 43 28,8 37 28,3 34 28,0

Пользоваться таблицей несложно. Она позволяет сравнить несколько возможных вариантов, исходя из рассчитанного значения плотности теплового потока, и выбрать оптимальный. Обратите внимание – в таблице указывается еще и температура на поверхности «теплого пола». Как уже говорилось выше, она не должна превышать установленных значений. То есть это становится еще одним важным критерием выбора варианта.

Например, требуется определить параметры системы тёплого пола, который должен обеспечивать нагрев в помещении до 20 °С, с плотностью теплового потока 61 Вт/м². Напольное покрытие – .

Входим в соответствующую таблицу и ищем возможные варианты.

  • При температурном режиме 55/45 - шаг укладки 300 мм, температура поверхности пола около 26 °С. Все в пределах допустимой нормы, но все же по верхнему пределу. То есть не самый лучший вариант.
  • При режиме 50/40 - шаг укладки 250 мм, температура поверхности – 25,3 °С. Уже значительно лучше.
  • При режиме 45/35 - шаг укладки 150 мм, температура поверхности 25,2 °С.
  • И при режиме 40/30, как видно, такого соотношения плотности теплового потока и температуры в помещения создать не получается.

Вот и остаётся выбрать оптимальный, наиболее устраивающий вариант. Но при этом важно не упускать из внимания еще одно важное обстоятельство. Температурный режим системы должен быть единым на одном насосно-смесительном узле и коллекторной группе. А к такому узлу могут подключаться сразу несколько контуров. То есть при планировании системы для нескольких помещений (или дня нескольких контуров в одной комнате) это обязательно принимается в расчет.

Определение длины контура «тёплого пола»

Если с шагом укладки контура есть определенность, то несложно просчитать и его длину. Поможет в этом размешенный ниже калькулятор. В программу вычислений уже заложен коэффициент, учитывающий изгибы труб. Кроме того, калькулятор одновременно выдает еще и значение общего объема теплоносителя в контуре – тоже немаловажная величина для последующих этапов проектирования всей системы.

Теплые полы отличное решение для благоустройства своего жилья. Температура пола напрямую зависит от длины труб теплого пола, спрятанных в стяжке. Труба в полу укладывается петлями. Фактически из количества петель и их длинны и складывается общая длина трубы. Понятно, чем длиннее труба в одинаковом объеме, тем теплее пол. В этой статье поговорим об ограничениях на длину одного контура теплого пола.

Приблизительные расчетные характеристики для труб диаметром 16 и 20 мм составляют: 80-100 и 100-120 метров соответственно. Эти данные приведены приблизительно для примерных расчетов. Давайте более детально рассмотрим процесс монтажа и заливки теплых полов.

Последствия превышения длины

Разберемся к каким последствиям может привести увеличение длины трубы теплого пола. Одна из причин — это увеличение гидравлического сопротивления, которая создаст дополнительную нагрузку на гидравлический насос в результате которой он может выйти из строя или же просто может не справится с возложенной на него задачей. Расчет сопротивления состоит из многих параметров. Условий, параметров укладки. Материала применяемых труб. Вот три основных: длина петли, количество изгибов и тепловая нагрузка на нее .

Стоит заметить, что тепловая нагрузка с увеличением петли растет. Также увеличивается и скорость потока и гидравлическое сопротивление. По скорости потока есть ограничения. Он не должен превышать 0.5 м/с. Если мы превысим это значение могут возникнуть различные шумовые эффекты в системе трубопровода. Так же увеличивается основной параметр, ради которого и делается этот расчет. Гидравлическое сопротивление нашей системы. На него тоже есть ограничения. Они составляют 30-40 кП на одну петлю.

Следующая причина состоит в том, что при увеличении длинны трубы теплого пола возрастает давление на стенки трубы, вызывающие удлинение этого участка при нагревании. Трубе находящейся в стяжке некуда деваться. И она начнет сужаться в самом слабом месте. Сужение может вызвать перекрытие потока в теплоносителе. У труб, изготовленных из различного материала, разный коэффициент расширения. Например, у полимерных труб коэффициент расширения очень высок. Все эти параметры необходимо учитывать при монтаже теплого пола.

Поэтому заливать стяжку теплого пола необходимо с опрессованными трубами. Опрессовать лучше воздухом с давлением примерно в 4 бара. Таким образом, когда Вы заполните систему водой и начнете ее нагревать, трубе в стяжке будет где расширяться.

Оптимальная длина трубы

Учитывая все выше перечисленные причины с учетом поправок на линейное расширение материала труб возьмем за основу максимальную длину труб теплого пола на один контур:

В таблице приведены оптимальные размеры длины теплого пола которые подойдут для всех режимов теплового расширения труб в различных режимах эксплуатации.

Примечание: В жилых домах достаточно 16 мм трубы. Больший диаметр не следует использовать. Это приведет к лишним тратам на энергоносители

1. Какой температуры должен быть теплоноситель в теплом полу и как можно контролировать его температуру?

Температура должна быть не выше 55 о С, а в некоторых случаях не выше 45 о С.

Если сказать еще точнее: температура должна быть в соответствии с температурой, рассчитанной в проекте, который учитывает необходимость конкретного помещения в тепле и материал, из которого сделано напольное чистовое покрытие.

Контролировать температуру можно с помощью вот такого термометра, а лучше двух.

Один термометр показывает температуру теплоносителя на подаче теплого пола (температуру смешанной воды), а другой - температуру обратки.

Если разница между показаниями двух термометров составляет 5 - 10 о С, значит система теплых полов у вас работает правильно.

2. Какой должна быть температура на поверхности теплого пола?

Температура поверхности работающего теплого пола на должна превышать следующие значения:

    29 о С - в помещениях длительного нахождения людей;

    35 о С - в граничных зонах;

    33 о С - в санузлах, ванных комнатых.

3. Какие формы укладки трубы используют для теплого пола?

Для укладки труб напольного отопления используют разные формы: змейку, угловую змейку, улитку, двойную змейку (меандр).

Также при укладке одного контура можно комбинировать эти формы.

К примеру, краевую зону можно расположить змейкой, а дальше основную часть пройти улиткой.

4. Какую укладку лучше всего использовать для теплого пола?

Для больших помещений квадратной, прямоугольной или круглой формы без геометрического эксклюзива лучше использовать улитку.

Для маленьких помещений, помещений со сложными формами или длинных помещений используйте змейку.

5. Какой должен быть шаг укладки?

Шаг укладки должен быть проектным в согласии с расчетами.

Для краевых зон используется шаг, равный 10 см. Для остальных зон с разностью в 5 см - 15 см, 20 см, 25 см. Но не больше 30 см.

Это ограничение связано с чувствительностью ступни человека.
При большем шаге труб нога начинает чувствовать разницу температуры участков пола.

Для этого можно воспользоваться очень простой формулой: L = S / N * 1,1 , где

S - площадь помещения или контура, для которого рассчитывается длина трубы (м 2);
N - шаг укладки;
1,1 - запас трубы в 10% на повороты.

К полученному результату не забудьте добавить длину трубы от коллектора до теплого пола, включая подачу и обратку.

Для примера рассмотрим задачу, в которой нужно подсчитать длину трубы для комнаты, в которой пол занимает полезную площадь 12 м 2 . Расстояние от коллектора до теплого пола - 7 м. Шаг укладки трубы 15 см (не забудьте перевести в м).

Решение: 12 / 0,15 * 1,1 + (7 * 2) = 102 м.

7. Какова максимальная длина одного контура?

Все зависит от гидравлического сопротивления или потерь давления в конкретном контуре, которые, в свою очередь, напрямую зависят как от диаметра используемых труб, так и от объема теплоносителя, который подается через сечение этих труб в единицу времени.

В случае с теплым полом, (если не учитывать вышеизложенные факторы) можно получить эффект так называемой запертой петли. Ситуация, при которой сколь мощный бы по напору насос вы не ставили, циркуляция через эту петлю будет невозможна.

На практике установлено, что потери давления, равные 20 кПа или 0,2 бара как раз приводят к такому эффекту.

Для того, чтобы не вдаваться в расчеты, приведем некоторые рекомендации, используемые нами на практике.
Для металлопластиковой трубы диаметром 16 мм мы делаем контур не больше 100 м. Обычно придерживаемся 80 м.
То же самое касается и труб из полиэтилена. Для 18 трубы из сшитого полиэтилена максимальная длина контура 120 м. На практике придерживаемся 80 - 100 м. Для 20 металлопластиковой трубы максимальная длина контура составляет 120 - 125 м.

8. Могут ли быть контура теплого пола разной длины?

Идеальная ситуация, когда все петли одинаковой длины. Не нужно ничего балансировать, настраивать.

На практике это достичь можно, но чаще всего не целесообразно.

К примеру, на объекте есть группа помещений, где нужно сделать теплый пол. Среди них также есть санузел, полезная площадь теплого пола в котором 4 м 2 . Соответственно длина трубопровода этого контура вместе с длиной труб до коллектора составляет всего лишь 40 м.
Неужели все помещения нужно обязательно подстраивать под эту длину, дробя полезную площадь оставшихся помещений по 4 м 2 ?

Конечно же нет. Это не целесообразно. И потом для чего балансировочная арматура, которая как раз и призвана для того, чтобы помочь уравнять потерю давления по контурам?

Опять же можно воспользоваться расчетами, через которые можно увидеть, до какого максимального предела можно допустить разброс длин труб отдельных контуров на конкретном объекте при данном оборудовании.

Но опять же, не погружая вас в сложные скучные расчеты, скажем, что мы на своих объектах допускаем разброс по длинам труб отдельных контуров в 30 - 40%. Также, при необходимости можно "играть" диаметрами труб, шагом укладки и "резать" площади больших помещений не на мелкие или крупные, а на средние куски.

9. Сколько контуров можно подключить к одному узлу смешения с одним насосом?

Этот вопрос по физическому смыслу похож на вопрос: "Сколько груза можно увезти на машине?"

Что вы еще хотели бы узнать, если бы кто-то задал вам этот вопрос?

Абсолютно правильно. Вы спросили бы: "О какой машине идет речь?"

Поэтому в вопросе: "Сколько петель можно подключать к коллектору теплого пола?", нужно учитывать диаметр коллектора и какой объем теплоносителя способен пропускать через себя узел смешения за единицу времени (принято считать м 3 /час). Или, что также равноценно, какую тепловую нагрузку способен нести выбранный вами узел смешения?

Как это узнать? Очень просто.

Для наглядности покажем на примере.

Предположим, в качестве узла смешения вы взяли Combimix компании Valtec. На какую тепловую нагрузку он рассчитан? Берем его паспорт. Смотри вырезку из паспорта.

Что мы видим?

Его максимальный коэффициент пропускной способности составляет 2,38 м 3 /час. Если ставим насос Grundfos UPS 25 60, то на третьей скорости при данном коэффициенте этот узел способен "утащить" нагрузку в 17000 Вт или 17 кВт.

Что это означает на практике? 17 кВт это сколько контуров?

Представим, что у нас есть дом, в котором есть сколько-то (неизвестно) помещений по 12 м 2 полезной площади теплого пола в каждом помещении. Трубы у нас уложены с шагом 20 см, что приводит к длине каждого контура, учитывая длину труб от самого теплого пола до коллектора, 86 м. В согласии с проектными расчетами мы также получили, что теплосъем с каждого м 2 этого теплого пола дает 80 Вт, что приводит нас соответственно к тепловой нагрузке каждого контура

12 * 80 = 960 Вт .

Какое кол-во помещений или подобных контуров способен обеспечить теплом наш узел смешения?

17000 / 960 = 17,7 подобных контуров или помещений.

Но это максимально!

На практике же в большинстве случаев не нужно делать расчет на максимальные показатели. Поэтому остановимся на цифре 15.

У самой же компании Valtec к этому узлу есть коллектор с максимальным количеством выходов - 12.

10. Нужно ли делать несколько контуров теплого пола в больших помещениях?

В больших помещениях конструкцию теплого пола нужно делить на меньшие площади и делать несколько контуров.

Эта необходимость возникает как минимум по двум причинам:

    ограничение длины трубы контура необходимо, чтобы не получить эффект "запертой петли", при котором через нее не будет циркуляции теплоносителя;

    правильная работа самой цементной заливной плиты, площадь которой не должна превышать 30 м 2 . С оотношение длин ее сторон должно быть 1/2 и длина одного из краев не должна превышать 8 м.

11. Как узнать, сколько контуров теплого пола понадобится для моего дома?

Для того чтобы понять какое количество петель теплого пола понадобится и на основании этого подобрать подходящий коллектор с таким же количеством выходов, нужно отталкиваться от площади самих помещений, в которых планируется эта система.

После этого вы вычисляете полезную площадь теплого пола. Как это сделать описано в 12 вопросе "Как подсчитать полезную площадь теплого пола? ".

Затем, воспользуйтесь следующим способом: отталкиваясь от шага теплого пола, разбейте полезную площадь теплого пола в каждом помещении на следующие размеры:

  • шаг 15 см - не более 12 м 2 ;
  • шаг 20 см - не более 16 м 2 ;
  • шаг 25 см - не более 20 м 2 ;
  • шаг 30 см - не более 24 м 2 .

Если площадь пола в помещении меньше указанных размеров, то ее разбивать не нужно.
Рекомендуем уменьшить эти значения на 2 м 2 , если длина присоединения труб от теплого пола до коллектора превышает 15 м.
Разбивая полезную площадь пола в помещениях, старайтесь также достичь того, чтобы длина труб в этих контурах была либо одинаковой, либо разница между отдельными контурами не превышала 30 - 40 %. Как узнать длину труб в каждом контуре, читайте в 6 вопросе "Как подсчитать длину трубы? ".

От каждой из стен помещения отступите по 30 см. Заштрихуйте получившееся пространство. Отметьте на плане участки, где будет постоянно стоять мебель: холодильник, мебельная стенка, диван, большой шкаф и т.д. Эти участки также заштрихуйте. Незаштрихованная часть плана помещения и будет той полезной площадью теплого пола, которую вы ищете.

Для наглядности давайте подсчитаем полезную площадь столовой, где будет теплый пол. Общая площадь столовой 20 м 2 , длина стен соответственно 4 м и 5 м. На кухне будет стоять кухонный гарнитур, холодильник и диван, которые отметим на плане. Не забудем отступить от стен по 30 см. Заштрихуем занятые участки. Смотрите рисунок.

А теперь подсчитаем полезную площадь теплого пола.

13. Какой общей толщины получается пирог теплого пола?

Все зависит от толщины утеплителя, так как остальные величины известны.

При следующей толщине утеплителя у вас получатся такие значения (толщина отделочного покрытия не учитывается):

      • 3 см - 9,5 см;
      • 8 см - 14,5 см;
      • 9 см - 15,5 см.

14. Чем пользуетесь вы для расчета системы водяного теплого пола?

Для расчета как систем радиаторного отопления, так и для систем теплого пола мы используем программу Audytor CO компании .

Ниже мы выкладываем скриншот модуля этой программы по предварительному расчету теплого пола и скриншот модуля по расчету слоев пирога теплого пола.

При внимательном рассмотрении этих скриншотов можно понять насколько серьезным является правильный расчет теплого пола.

Также можно увидеть работу самой программы, которая делает возможным проведение визуального контроля над такими важными параметрами как длина трубы, потери давления, температура на поверхности пола, тепло, уходящее бесполезно вниз, полезный тепловой поток и т.д.

15. Как определить габариты коллекторного шкафа, чтобы разместить в нем все необходимые узлы?

Определить габариты коллекторного шкафа не сложно. Мы вновь предлагаем воспользоваться продукцией компании Valtec и их готовыми рекомендациями, представленными в таблице, при условии, что вы пользуетесь уже готовыми узлами для теплого пола, выпускаемыми этим производителем.

Линейные размеры коллекторного шкафа

(ШРН - наружный; ШРВ - внутренний)

Модель Длина, мм Глубина, мм Высота, мм
ШРВ1 670 125 494
ШРВ2 670 125 594
ШРВ3 670 125 744
ШРВ4 670 125 894
ШРВ5 670 125 1044
ШРВ6 670 125 1150
ШРВ7 670 125 1344
ШРН1 651 120 453
ШРН2 651 120 553
ШРН3 651 120 703
ШРН4 651 120 853
ШРН5 651 120 1003
ШРН7 658 121 1309


Подбор коллекторного шкафа

Коллекторные группы 1
(VT.594, VT59)

Модель шкафа
ШРН/ШРВ +
Combimix +
шаровый кран

Модель шкафа
ШРН/ШРВ +
Dualmix +
шаровый кран
Модель шкафа
ШРН/ШРВ + кран
Коллектор 1*3вых ШРН3/ШРВ3 ШРН4/ШРВ4 ШРН1/ШРВ1
Коллектор 1*4вых ШРН3/ШРВ3 ШРН4/ШРВ4 ШРН2/ШРВ2
Коллектор 1*5вых ШРН4/ШРВ3 ШРН5/ШРВ4 ШРН2/ШРВ2
Коллектор 1*6вых ШРН4/ШРВ4 ШРН5/ШРВ5 ШРН3/ШРВ3
Коллектор 1*7вых ШРН4/ШРВ4 ШРН5/ШРВ5 ШРН3/ШРВ3
Коллектор 1*8вых ШРН5/ШРВ4 ШРН6/ШРВ5 ШРН3/ШРВ3
Коллектор 1*9вых ШРН5/ШРВ5 ШРН6/ШРВ6 ШРН4/ШРВ4
Коллектор 1*10вых ШРН5/ШРВ5 ШРН6/ШРВ6 ШРН4/ШРВ4
Коллектор 1*11вых ШРН6/ШРВ5 ШРН7/ШРВ6 ШРН4/ШРВ4
Коллектор 1*12вых ШРН6/ШРВ6 ШРН7/ШРВ7 ШРН5/ШРВ5

16. На какой высоте нужно устанавливать коллекторный шкаф?

На этот счет нет никаких конкретных правил, но есть рекомендации.

С одной стороны, понятно, что монтируя коллекторный шкаф, нужно учитывать высоту будущей стяжки и отделки, чтобы не получилась ситуация, когда невозможно будет открыть даже дверцу шкафа.

С другой стороны, нужно учитывать удобство обслуживания и необходимость возможной замены отдельных элементов системы с вероятностью отсоединения трубопровода.

Чем короче отрезок трубы, тем больше его жесткость и наоборот.

Учитывая этот фактор, можно сделать подъем коллекторного шкафа на 20 - 25 см от уровня чистого пола.

Однако, нельзя забывать об очень важном дизайнерском элементе. Если подъем шкафа приводит к недопустимому нарушению дизайна и невозможно решить эту задачу другим способом, опускайте шкаф к уровню пола, но с тем расчетом, чтобы он мог открываться.

Без предварительных расчетов неосуществима. Чтобы получить длину труб, мощность всей отопительной системы и других нужных значений, потребуется в онлайн-калькулятор вводить только точные данные. О правилах и нюансах расчета можно узнать далее.

Общие данные для расчета

Первым параметром, который нужно учесть перед расчетами, является выбор варианта отопительной системы: будет ли она основной или вспомогательной. В первом случае она должна обладать большей мощностью, чтобы самостоятельно обогреть весь дом. Второй вариант применим для комнат с малой теплоотдачей радиаторов.

Температурный режим пола выбирается согласно строительным нормам:

  • Поверхность пола жилого помещения должна нагреваться до 29 градусов.
  • По краям комнаты пол может нагреваться до 35 градусов, чтобы компенсировать потери тепла сквозь холодные стены и от сквозняка, исходившего сквозь открывающиеся двери.
  • В ванных комнатах и зонах с высокой влажностью оптимальная температура – 33 градуса.

Если обустройство теплого пола осуществляется под низом паркетной доски, то нужно учесть, что температура не должна превышать 27 градусов, иначе напольное покрытие быстро испортиться.


В качестве вспомогательных параметров используется:
  • Общая длина труб и их шаг (монтажное расстояние между трубами) . Рассчитывается благодаря вспомогательному параметру в виде конфигурации и площади комнаты.
  • Тепловые потери . Такой параметр учитывает теплопроводность материала, из которого построен дом, а также его степень изношенности.
  • Напольное покрытие . Выбор напольного покрытия влияет на теплопроводящую способность пола. Оптимальным является использование кафеля и керамогранита, поскольку они имеют высокую теплопроводность и быстро прогреваются. При выборе линолеума или ламината стоит приобрести материал, не имеющий теплоизоляционной прослойки. От деревянного покрытия стоит отказаться, поскольку такой пол практически не будет нагреваться.
  • Климат местности , в котором стоит постройка с системой теплого пола. Нужно учесть сезонную смену температур в этом крае и самую низкую температуру в зимний период.

Большая часть тепла жилья уходит через его тонкие стены и некачественные материалы оконной конструкции. Перед тем как выполнить рассматриваемую систему отопления, есть смысл утеплить сам дом, а затем уже рассчитывать его теплопотери. Это существенно снизит энергозатраты его владельца.

Расчет трубы для теплого пола

Водяной теплый пол – соединение труб, которые подключаются к коллектору. Он может быть выполнен из металлопластиковых, медных или гофрированных труб. В любом случае, необходимо правильно определить его протяжность. Для этого предлагается использовать графический метод.

На миллиметровой бумаге в масштабе или в натуральную величину прочерчивают будущий контур «нагревательного элемента», предварительно выбрав тип укладки труб. Как правило, выбор делается в пользу одного из двух вариантов:

  • Змейка . Выбирается для небольших жилых помещений, имеющих низкие тепловые потери. Труба располагается как вытянутая синусоида и вытягивается вдоль стены к коллектору. Минус такой укладки в том, что теплоноситель в трубе постепенно остывает, поэтому температура в начале и конце комнаты может сильно отличаться. Например, если длина трубы составляет 70 м, то разница может составить 10 градусов.
  • Улитка . Такая схема предполагает, что труба изначально укладывается вдоль стенок, а затем изгибается на 90 градусов и закручивается. Благодаря такой укладке удается чередовать холодные и горячие трубы, получая равномерно прогревающуюся поверхность.


Выбрав тип укладки, при реализации схемы на бумаге учитываются следующие показатели:
  • Шаг труб, допустимый в спирали, варьируется от 10 до 15 см.
  • Длина труб в контуре не превышает 120 м. Чтобы определить точную длину (L), можно использовать формулу:

    L = S/N * 1,1 , где


    S – площадь, покрываемая контуром (м?);
    N – шаг (м);
    1,1 – коэффициент запаса на изгибы.

    Стоит понимать, что труба должна располагаться цельным отрезком от выхода напорного коллектора и до «обратки».

  • Диаметр прокладываемых труб – 16 мм, а толщина стяжки не превышает 6 см. Встречаются также диаметры 20 и 25. В идеале, чем больше этот параметр, тем выше теплоотдача системы.
Температура теплоносителя и его скорость определяется исходя из усредненных значений:
  • Расход воды в час при пропускном диаметре труб в 16 см может достигать от 27 до 30 л в час.
  • Чтобы прогреть помещение до температуры от 25 до 37 градусов, нужно чтобы система сама нагревалась до 40-55 °С.
  • Снизить температуру в контуре до 15 градусов поможет потеря давления в корпусе 13-15 кПа.
В результате применения графического метода будет известен вход и выход отопительной системы.

Расчет мощности водяного теплого пола

Его начинают так же, как и в предыдущей методике – с подготовки миллиметровой бумаги, только в этом случае на нее необходимо нанести не только контуры, но и расположение окон и дверей. Масштабирование прорисовки: 0,5 метра = 1 см.

Для этого стоит учесть несколько условий:

  • Трубы должны обязательно располагаться вдоль окон, чтобы предупредить существенные теплопотери сквозь них.
  • Максимальная площадь для обустройства теплого пола не должна превышать 20 м2. Если помещение больше, тогда его разбивают на 2 и более частей, и для каждой из них рассчитывают отдельный контур.
  • Необходимо выдержать обязательную величину от стен к первой ветке контура в 25 см.
На выбор диметра труб будет влиять их расположение друг относительно друга, причем оно не должно превышать 50 см. Величина теплоотдачи на 1 м2 равная 50 Вт достигается при шаге труб в 30 см, если при расчете она получается больше, то необходимо уменьшать шаг труб.

Определить количество труб достаточно просто: предварительно измерить их протяженность, а затем умножить ее на масштабный коэффициент, к полученной длине добавить 2 м для подвода контура к стояку. Учитывая, что допустимая длина труб находится в пределах от 100 до 120 м, нужно общую длину разделить на выбранную протяженность одной трубы.

Параметр подложки под теплый пол определяется исходя из площади комнаты, которая получается после умножения длины и ширины помещения. В случае если комната имеет сложную конфигурацию для получения точного результата, его необходимо разбить на сегменты и рассчитать площадь каждого из них.

Примеры расчета водяного теплого пола

Далее вы сможете ознакомиться с двумя примерами расчета водяного теплого пола:

Пример 1

В комнате с длиной стен 4?6 м, мебель в которой занимает практически четвертую ее часть, теплый пол должен занимать не менее 17 м2. Для его выполнения применяются трубы диаметром 20 мм, которые укладываются как змейка. Между ними выдерживается шаг в 30 см. Укладка выполняется вдоль короткой стены.

Перед прокладкой труб необходимо прочертить схему их расположения на полу в наиболее подходящем масштабе. Всего в такой комнате поместиться 11 рядов труб, каждая из которых будет длиной в 5 м, всего получиться 55 м трубопровода. К полученной длине труб добавляется еще 2 м. Именно такое расстояние нужно выдержать до подсоединения к стояку. Общая длина труб будет составлять 57 м.

Если помещение очень холодное, то может потребоваться проложить двухконтурное отопление. Тогда следует запастись не менее 140 м труб, такая протяженность трубопровода поможет компенсировать сильное падение давления на выходе и на входе системы. Можно делать каждый контур разной длины, но отличие между ними не должно быть больше 15 метров. К примеру, один контур выполняется протяженностью 76 м, а второй – 64 м.

Расчет теплого пола можно проводить двумя методами:

  • Для первого способа применяется формула:

    L = S ? 1,1 / B , где


    L – длина трубопровода;
    B – шаг укладки, измеряемый в метрах;
    S – площадь отопления, в м2.
  • Во втором варианте применяются табличные данные, приведенные ниже. Их умножают на площадь контура.

Пример 2

Требуется провести теплый пол в комнате с длиной стен 5х6 м, общая площадь которой составляет 30 м2. Чтобы система эффективно работала, она должна отапливать не менее 70% пространства, что составляет 21 м2. Будем считать, что средние теплопотери – около 80 Вт/м2. Так, удельными будут теплопотери 1680 Вт/м2 (21х80). Желательная температура в комнате – 20 градусов, при этом будут использоваться трубы с диаметром 20 мм. На них ложится 7 см стяжка и плитка. Зависимость между шагом, теплотой теплоносителя, плотностью теплового потока и диаметром труб представлена на схеме:


Так, если имеется 20 мм труба, для компенсации теплопотери 80 Вт/м2 потребуется 31,5 градусов при шаге 10 см и 33,5 градусов при шаге в 15 см.

Температура на поверхности пола на 6 градусов меньше, нежели температура воды в трубах, что обусловлено наличием стяжки и покрытия.

Видео: Расчет теплого водяного пола

Из видео можно будет узнать теорию гидравлики, связанную с обустройством теплых полов, ее применение к вычислениям, пример расчета водяного теплого пола в специальной программе онлайн. Вначале будут рассмотрены простые цепи подключения труб для такого пола, а затем более сложные их варианты, при которых будет производиться расчет всех узлов системы отопления теплого пола:



При самостоятельном вычислении могут возникнуть погрешности. Чтобы избежать их и проверить правильность расчетов, следует воспользоваться компьютерными программами, в которых заложены поправочные коэффициенты. Для вычисления теплого пола нужно выбрать интервал прокладки труб, их диаметр, а также материал. Погрешность вычислений онлайн-программой не превышает 15%.