Как решить квадратное уравнение графически. Графическое решение квадратных уравнений С 42 графическое решение уравнений 1 вариант

Пусть имеется полное квадратное уравнение: A*x2+B*x+C=0, где A, B и C - любые числа, причем A не равно нулю. Это общий случай квадратного уравнения. Существует также приведенный вид, в котором A=1. Чтобы решить графически любое уравнение, нужно перенести в другую часть слагаемое с наибольшей степенью и приравнять обе части к какой-либо переменной.

После этого в левой части уравнения останется A*x2, а в правой - B*x-C (можно предположить, что B - отрицательное число, сути это не меняет). Получится уравнение A*x2=B*x-C=y. Для наглядности в этом случае обе части приравнены к переменной y.

Построение графиков и обработка результатов

Теперь можно записать два уравнения: y=A*x2 и y=B*x-C. Далее необходимо построить график каждой из этих функций. График y=A*x2 представляет собой параболу с вершиной в начале координат, ветви которой направлены вверх или вниз, в зависимости от знака числа A. Если оно отрицательно, ветви направлены вниз, если положительно - вверх.

График y=B*x-C представляет собой обычную прямую линию. Если C=0, прямая проходит через начало координат. В общем случае она отсекает от оси ординат отрезок, равный С. Угол наклона этой прямой относительно оси абсцисс определяется коэффициентом B. Он равен тангенсу наклона этого угла.

После того как графики построены, будет видно, что они пересекутся в двух точках. Координаты этих точек по оси абсцисс определяют корни квадратного уравнения. Для их точного определения нужно четко строить графики и правильно выбрать масштаб.

Другой способ графического решения

Существует еще один способ графического решения квадратного уравнения. Необязательно переносить B*x+C в другую часть уравнения. Можно сразу построить график функции y=A*x2+B*x+C. Такой график представляет собой параболу с вершиной в произвольной точке. Этот способ сложнее предыдущего, зато можно построить только один график, чтобы .

Сначала нужно определить вершину параболы с координатами x0 и y0. Ее абсцисса вычисляется по формуле x0=-B/2*a. Для определения ординаты нужно подставить полученное значение абсциссы в исходную функцию. Математически это утверждение записывается так: y0=y(x0).

Затем требуется найти две точки, симметричные оси параболы. В них исходная функция должна обращаться в ноль. После этого можно строить параболу. Точки ее пересечения с осью Х дадут два корня квадратного уравнения.

На этом видеоуроке к изучению предлагается тема «Функция y=x 2 . Графическое решение уравнений». В ходе этого занятия учащиеся смогут познакомиться с новым способом решения уравнений - графическим, который основан на знании свойств графиков функций. Учитель покажет, как можно решить графическим способом функцию y=x 2 .

Тема: Функция

Урок: Функция . Графическое решение уравнений

Графическое решение уравнений основано на знании графиков функций и их свойств. Перечислим функции, графики которых мы знаем:

1) , графиком является прямая линия, параллельная оси абсцисс, проходящая через точку на оси ординат. Рассмотрим пример: у=1:

При различных значениях мы получаем семейство прямых параллельных оси абсцисс.

2) Функция прямой пропорциональности график данной функции - это прямая, проходящая через начало координат. Рассмотрим пример:

Данные графики мы уже строили в предыдущих уроках, напомним, что для построения каждой прямой нужно выбрать точку, удовлетворяющую ей, а второй точкой взять начало координат.

Напомним роль коэффициента k: при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. Кроме того, между двумя параметрами k одного знака существует следующее соотношение: при положительных k чем он больше, тем быстрее функция возрастает, а при отрицательных - функция быстрее убывает при больших значениях k по модулю.

3) Линейная функция . При - получаем точку пересечения с осью ординат и все прямые такого вида проходят через точку (0; m). Кроме того, при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. И конечно величина k влияет на скорость изменения значения функции.

4). Графиком данной функции является парабола.

Рассмотрим примеры.

Пример 1 - графически решить уравнение:

Функции подобного вида мы не знаем, поэтому нужно преобразить заданное уравнение, чтобы работать с известными функциями:

Мы получили в обоих частях уравнения знакомые функции:

Построим графики функций:

Графики имеют две точки пересечения: (-1; 1); (2; 4)

Проверим, правильно ли найдено решение, подставим координаты в уравнение:

Первая точка найдена правильно.

, , , , , ,

Вторая точка также найдена верно.

Итак, решениями уравнения являются и

Поступаем аналогично предыдущему примеру: преобразуем заданное уравнение до известных нам функций, построим их графики, найдем токи пересечения и отсюда укажем решения.

Получаем две функции:

Построим графики:

Данные графики не имеют точек пересечения, значит заданное уравнение не имеет решений

Вывод: в данном уроке мы провели обзор известных нам функций и их графиков, вспомнили их свойства и рассмотрели графический способ решения уравнений.

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

Задание 1: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 494, ст.110;

Задание 2: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 495, ст.110;

Задание 3: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 496, ст.110;

Пусть имеется полное квадратное уравнение: A*x2+B*x+C=0, где A, B и C - любые числа, причем A не равно нулю. Это общий случай квадратного уравнения. Существует также приведенный вид, в котором A=1. Чтобы решить графически любое уравнение, нужно перенести в другую часть слагаемое с наибольшей степенью и приравнять обе части к какой-либо переменной.

После этого в левой части уравнения останется A*x2, а в правой - B*x-C (можно предположить, что B - отрицательное число, сути это не меняет). Получится уравнение A*x2=B*x-C=y. Для наглядности в этом случае обе части приравнены к переменной y.

Построение графиков и обработка результатов

Теперь можно записать два уравнения: y=A*x2 и y=B*x-C. Далее необходимо построить график каждой из этих функций. График y=A*x2 представляет собой параболу с вершиной в начале координат, ветви которой направлены вверх или вниз, в зависимости от знака числа A. Если оно отрицательно, ветви направлены вниз, если положительно - вверх.

График y=B*x-C представляет собой обычную прямую линию. Если C=0, прямая проходит через начало координат. В общем случае она отсекает от оси ординат отрезок, равный С. Угол наклона этой прямой относительно оси абсцисс определяется коэффициентом B. Он равен тангенсу наклона этого угла.

После того как графики построены, будет видно, что они пересекутся в двух точках. Координаты этих точек по оси абсцисс определяют корни квадратного уравнения. Для их точного определения нужно четко строить графики и правильно выбрать масштаб.

Другой способ графического решения

Существует еще один способ графического решения квадратного уравнения. Необязательно переносить B*x+C в другую часть уравнения. Можно сразу построить график функции y=A*x2+B*x+C. Такой график представляет собой параболу с вершиной в произвольной точке. Этот способ сложнее предыдущего, зато можно построить только один график, чтобы .

Сначала нужно определить вершину параболы с координатами x0 и y0. Ее абсцисса вычисляется по формуле x0=-B/2*a. Для определения ординаты нужно подставить полученное значение абсциссы в исходную функцию. Математически это утверждение записывается так: y0=y(x0).

Затем требуется найти две точки, симметричные оси параболы. В них исходная функция должна обращаться в ноль. После этого можно строить параболу. Точки ее пересечения с осью Х дадут два корня квадратного уравнения.

С квадратными уравнениями вы уже встречались в курсе алгебры 7-го класса. Напомним, что квадратным уравнением называют уравнение вида ах 2 + bх + с = 0, где а, b, с — любые числа (коэффициенты), причем а . Используя наши знания о некоторых функциях и их графиках, мы в состоянии уже теперь, не дожидаясь систематического изучения темы «Квадратные уравнения», решать некоторые квадратные уравнения, причем различными способами; мы рассмотрим эти способы на примере одного квадратного уравнения.

Пример. Решить уравнение х 2 - 2х - 3 = 0.
Решение.
I способ . Построим график функции у = х 2 - 2х - 3, воспользовавшись алгоритмом из § 13:

1) Имеем: а = 1, b = -2, х 0 = = 1, у 0 = f(1)= 1 2 - 2 - 3= -4. Значит, вершиной параболы служит точка (1; -4), а осью параболы — прямая х = 1.

2) Возьмем на оси х две точки, симметричные относительно оси параболы, например точки х = -1 и х = 3.

Имеем f(-1) = f(3) = 0. Построим на координатной плоскости точки (-1; 0) и (3; 0).

3) Через точки (-1; 0), (1; -4), (3; 0) проводим параболу (рис. 68).

Корнями уравнения х 2 - 2х - 3 = 0 являются абсциссы точек пересечения параболы с осью х; значит, корни уравнения таковы: х 1 = - 1, х 2 — 3.

II способ. Преобразуем уравнение к виду х 2 = 2х + 3. Построим в одной системе координат графики функций у — х 2 и у = 2х + 3 (рис. 69). Они пересекаются в двух точках А(- 1; 1) и В(3; 9). Корнями уравнения служат абсциссы точек А и В, значит, х 1 = - 1, х 2 — 3.


III способ . Преобразуем уравнение к виду х 2 - 3 = 2х. Построим в одной системе координат графики функций у = х 2 - 3 и у = 2х (рис. 70). Они пересекаются в двух точках А(-1; - 2) и В (3; 6). Корнями уравнения являются абсциссы точек А и В, поэтому х 1 = - 1, х 2 = 3.

IV способ. Преобразуем уравнение к виду х 2 -2х 4-1-4 = 0
и далее
х 2 - 2х + 1 = 4, т. е. (х - IJ = 4.
Построим в одной системе координат параболу у = (х - 1) 2 и прямую y = 4 (рис. 71). Они пересекаются в двух точках А(-1; 4) и В(3; 4). Корнями уравнения служат абсциссы точек А и В, поэтому х 1 = -1, х 2 = 3.

V способ. Разделив почленно обе части уравнения на х, получим


Построим в одной системе координат гиперболу и прямую у = х - 2 (рис. 72).

Они пересекаются в двух точках А (-1; -3) и В(3; 1). Корнями уравнения являются абсциссы точек А и В, следовательно, х 1 = - 1, х 2 = 3.

Итак, квадратное уравнение х 2 - 2х - 3 = 0 мы решили графически пятью способами. Давайте проанализируем, в чем суть этих способов.

I способ. Строят график функции у точки его пересечения с осью х.

II способ. Преобразуют уравнение к виду ах 2 = -bх - с, строят параболу у = ах 2 и прямую у = -bх - с, находят точки их пересечения (корнями уравнения служат абсциссы точек пересечения, если, разумеется, таковые имеются).

III способ. Преобразуют уравнение к виду ах 2 + с = - bх,строят параболу у — ах 2 + с и прямую у = -bх (она проходит через начало координат); находят точки их пересечения.

IV способ. Применяя метод выделения полного квадрата, преобразуют уравнение к виду

Строят параболу у = а (х + I) 2 и прямую у = - m, параллельную оси х; находят точки пересечения параболы и прямой.

V способ. Преобразуют уравнение к виду


Строят гиперболу (это — гипербола при условии, что ) и прямую у = — ах — b; находят точки их пересечения.

Заметим, что первые четыре способа применимы к любым уравнениям вида ах 2 + bх + с = 0, а пятый — только к тем, у которых с . На практике можно выбирать тот способ, который вам кажется наиболее приспособленным к данному уравнению или который вам больше нравится (или более понятен).

Замечание . Несмотря на обилие способов графического решения квадратных уравнений, уверенности в том, что любое квадратное уравнение мы
сможем решить графически, нет. Пусть, например, нужно решить уравнение х 2 - х - 3 = 0 (специально возьмем уравнение, похожее на то, что было в
рассмотренном примере). Попробуем его решить, например, вторым способом: преобразуем уравнение к виду х 2 = х + 3, построим параболу у = х 2 и
прямую у = х + 3, они пересекаются в точках А и В (рис. 73), значит, уравнение имеет два корня. Но чему равны эти корни, мы с помощью чертежа
сказать не можем — точки А и В имеют не такие «хорошие» координаты, как в приведенном выше примере. А теперь рассмотрим уравнение
х 2 - 16х— 95 = 0. Попробуем его решить, скажем, третьим способом. Преобразуем уравнение к виду х 2 — 95 = 16х. Здесь надо построить параболу
у = х 2 - 95 и прямую у = 16х. Но ограниченные размеры листа тетради не позволяют этого сделать, ведь параболу у = х 2 надо опустить на 95 клеток вниз.

Итак, графические способы решения квадратного уравнения красивы и приятны, но не дают стопроцентной гарантии решения любого квадратного уравнения. Учтем это в далнейшем.

Многие задания, которые мы привыкли вычислять чисто алгебраически, можно намного легче и быстрее решить, в этом нам поможет использование графиков функций. Ты скажешь «как так?» чертить что-то, да и что чертить? Поверь мне, иногда это удобнее и проще. Приступим? Начнем с уравнений!

Графическое решение уравнений

Графическое решение линейных уравнений

Как ты уже знаешь, графиком линейного уравнения является прямая линия, отсюда и название данного вида. Линейные уравнения достаточно легко решать алгебраическим путем - все неизвестные переносим в одну сторону уравнения, все, что нам известно - в другую и вуаля! Мы нашли корень. Сейчас же я покажу тебе, как это сделать графическим способом.

Итак, у тебя есть уравнение:

Как его решить?
Вариант 1 , и самый распространенный - перенести неизвестные в одну сторону, а известные в другую, получаем:

А теперь строим. Что у тебя получилось?

Как ты думаешь, что является корнем нашего уравнения? Правильно, координата точки пересечения графиков:

Наш ответ -

Вот и вся премудрость графического решения. Как ты с легкостью можешь проверить, корнем нашего уравнения является число!

Как я говорила выше, это самый распространенный вариант, приближенный к алгебраическому решению, но можно решать и по-другому. Для рассмотрения альтернативного решения вернемся к нашему уравнению:

В этот раз не будем ничего переносить из стороны в сторону, а построим графики напрямую, так как они сейчас есть:

Построил? Смотрим!

Что является решением на этот раз? Все верно. Тоже самое - координата точки пересечения графиков:

И, снова наш ответ - .

Как ты видишь, с линейными уравнениями все предельно просто. Настало время рассмотреть что-нибудь посложнее... Например, графическое решение квадратных уравнений.

Графическое решение квадратных уравнений

Итак, теперь приступим к решению квадратного уравнения. Допустим, тебе нужно найти корни у этого уравнения:

Конечно, ты можешь сейчас начать считать через дискриминант, либо по теореме Виета, но многие на нервах ошибаются при переумножении или в возведении в квадрат, особенно, если пример с большими числами, а калькулятора, как ты знаешь, у тебя на экзамене не будет… Поэтому, давай попробуем немного расслабиться и порисовать, решая данное уравнение.

Графически найти решения данного уравнения можно различными способами. Рассмотрим различные варианты, а уже ты сам выберешь, какой больше всего тебе понравится.

Способ 1. Напрямую

Просто строим параболу по данному уравнению:

Чтобы сделать это быстро, дам тебе одну маленькую подсказку: удобно начать построение с определения вершины параболы. Определить координаты вершины параболы помогут следующие формулы:

Ты скажешь «Стоп! Формула для очень похожа на формулу нахождения дискриминанта» да, так оно и есть, и это является огромным минусом «прямого» построения параболы, чтобы найти ее корни. Тем не менее, давай досчитаем до конца, а потом я покажу, как это сделать намного (намного!) проще!

Посчитал? Какие координаты вершины параболы у тебя получились? Давай разбираться вместе:

Точно такой же ответ? Молодец! И вот мы знаем уже координаты вершины, а для построения параболы нам нужно еще … точек. Как ты думаешь, сколько минимум точек нам необходимо? Правильно, .

Ты знаешь, что парабола симметрична относительно своей вершины, например:

Соответственно, нам необходимо еще две точки по левой или правой ветви параболы, а в дальнейшем мы эти точки симметрично отразим на противоположную сторону:

Возвращаемся к нашей параболе. Для нашего случая точка. Нам необходимо еще две точки, соответственно, можно взять положительные, а можно взять отрицательные? Какие точки тебе удобней? Мне удобней работать с положительными, поэтому я рассчитаю при и.

Теперь у нас есть три точки, и мы спокойно можем построить нашу параболу, отразив две последние точки относительно ее вершины:

Как ты думаешь, что является решением уравнения? Правильно, точки, в которых, то есть и. Потому что.

И если мы говорим, что, то значит, что тоже должен быть равен, или.

Просто? Это мы закончили с тобой решение уравнения сложным графическим способом, то ли еще будет!

Конечно, ты можешь проверить наш ответ алгебраическим путем - посчитаешь корни через теорему Виета или Дискриминант. Что у тебя получилось? То же самое? Вот видишь! Теперь посмотрим совсем простое графическое решение, уверена, оно тебе очень понравится!

Способ 2. С разбивкой на несколько функций

Возьмем все тоже наше уравнение: , но запишем его несколько по-другому, а именно:

Можем мы так записать? Можем, так как преобразование равносильно. Смотрим дальше.

Построим отдельно две функции:

  1. - графиком является простая парабола, которую ты с легкостью построишь даже без определения вершины с помощью формул и составления таблицы для определения прочих точек.
  2. - графиком является прямая, которую ты так же легко построишь, прикинув значения и в голове даже не прибегая к калькулятору.

Построил? Сравним с тем, что вышло у меня:

Как ты считаешь, что в данном случае является корнями уравнения? Правильно! Координаты по, которые получились при пересечении двух графиков и, то есть:

Соответственно, решением данного уравнения являются:

Что скажешь? Согласись, этот способ решения намного легче, чем предыдущий и даже легче, чем искать корни через дискриминант! А если так, попробуй данным способом решить следующее уравнение:

Что у тебя получилось? Сравним наши графики:

По графикам видно, что ответами являются:

Справился? Молодец! Теперь посмотрим уравнения чууууть-чуть посложнее, а именно, решение смешанных уравнений, то есть уравнений, содержащих функции разного вида.

Графическое решение смешанных уравнений

Теперь попробуем решить следующее:

Конечно, можно привести все к общему знаменателю, найти корни получившегося уравнения, не забыв при этом учесть ОДЗ, но мы опять же, попробуем решить графически, как делали во всех предыдущих случаях.

В этот раз давай построим 2 следующих графика:

  1. - графиком является гипербола
  2. - графиком является прямая, которую ты легко построишь, прикинув значения и в голове даже не прибегая к калькулятору.

Осознал? Теперь займись построением.

Вот что вышло у меня:

Глядя на этот рисунок, скажи, что является корнями нашего уравнения?

Правильно, и. Вот и подтверждение:

Попробуй подставить наши корни в уравнение. Получилось?

Все верно! Согласись, графически решать подобные уравнения одно удовольствие!

Попробуй самостоятельно графическим способом решить уравнение:

Даю подсказку: перенеси часть уравнения в правую сторону, чтобы с обоих сторон оказались простейшие для построения функции. Намек понял? Действуй!

Теперь посмотрим, что у тебя вышло:

Соответственно:

  1. - кубическая парабола.
  2. - обыкновенная прямая.

Ну и строим:

Как ты уже давно у себя записал, корнем данного уравнения является - .

Прорешав такое большое количество примеров, уверена, ты осознал как можно легко и быстро решать уравнения графическим путем. Настало время разобраться, как решать подобным способом системы.

Графическое решение систем

Графическое решение систем по сути ничем не отличается от графического решения уравнений. Мы так же будем строить два графика,и их точки пересечения и будут являться корнями данной системы. Один график - одно уравнение, второй график - другое уравнение. Все предельно просто!

Начнем с самого простого - решение систем линейных уравнений.

Решение систем линейных уравнений

Допустим, у нас есть следующая система:

Для начала преобразуем ее таким образом, чтобы слева было все, что связано с, а справа - что связано с. Иными словами, запишем данные уравнения как функцию в привычном для нас виде:

А теперь просто строим две прямые. Что в нашем случае является решением? Правильно! Точка их пересечения! И здесь необходимо быть очень-очень внимательным! Подумай, почему? Намекну: мы имеем дело с системой: в системе есть и, и … Намек понял?

Все верно! Решая систему, мы должны смотреть обе координаты, а не только, как при решении уравнений! Еще один важный момент - правильно их записать и не перепутать, где у нас значение, а где значение! Записал? Теперь давай все сравним по порядку:

И ответы: и. Сделай проверку - подставь найденные корни в систему и убедись, правильно ли мы ее решили графическим способом?

Решение систем нелинейных уравнений

А что если вместо одной прямой, у нас будет квадратное уравнение? Да ничего страшного! Просто ты вместо прямой построишь параболу! Не веришь? Попробуй решить следующую систему:

Какой наш следующий шаг? Правильно, записать так, чтобы нам было удобно строить графики:

А теперь так вообще дело за малым - построил быстренько и вот тебе решение! Строим:

Графики получились такими же? Теперь отметь на рисунке решения системы и грамотно запиши выявленные ответы!

Все сделал? Сравни с моими записями:

Все верно? Молодец! Ты уже щелкаешь подобные задачи как орешки! А раз так, дадим тебе систему посложнее:

Что мы делаем? Правильно! Записываем систему так, чтобы было удобно строить:

Немного тебе подскажу, так как система выглядит ну очень не простой! Строя графики, строй их «побольше», а главное, не удивляйся количеству точек пересечения.

Итак, поехали! Выдохнул? Теперь начинай строить!

Ну как? Красиво? Сколько точек пересечения у тебя получилось? У меня три! Давай сравнивать наши графики:

Так же? Теперь аккуратно запиши все решения нашей системы:

А теперь еще раз посмотри на систему:

Представляешь, что ты решил это за каких-то 15 минут? Согласись, математика - это все-таки просто, особенно, когда глядя на выражение, не боишься ошибиться, а берешь и решаешь! Ты большой молодец!

Графическое решение неравенств

Графическое решение линейных неравенств

После последнего примера тебе все по плечу! Сейчас выдохни - по сравнению с предыдущими разделами этот будет очень-очень легким!

Начнем мы, как обычно с графического решения линейного неравенства. Например, вот этого:

Для начала проведем простейшие преобразования - раскроем скобки полных квадратов и приведем подобные слагаемые:

Неравенство нестрогое, поэтому - не включается в промежуток, и решением будут являться все точки, которые находятся правее, так как больше, больше и так далее:

Ответ:

Вот и все! Легко? Давай решим простое неравенство с двумя переменными:

Нарисуем в системе координат функцию.

Такой график у тебя получился? А теперь внимательно смотрим, что там у нас в неравенстве? Меньше? Значит, закрашиваем все, что находится левее нашей прямой. А если было бы больше? Правильно, тогда закрашивали бы все, что находится правее нашей прямой. Все просто.

Все решения данного неравенства «затушеваны» оранжевым цветом. Вот и все, неравенство с двумя переменными решено. Это значит, что координаты и любой точки из закрашенной области - и есть решения.

Графическое решение квадратных неравенств

Теперь будем разбираться с тем, как графически решать квадратные неравенства.

Но прежде, чем перейти непосредственно к делу, давай повторим некоторый материал, касающийся квадратной функции.

А за что у нас отвечает дискриминант? Правильно, за положение графика относительно оси (если не помнишь этого, то тогда точно прочти теорию о квадратичных функциях).

В любом случае, вот тебе небольшая табличка-напоминалка:

Теперь, когда мы освежили в памяти весь материал, перейдем к делу - решим графически неравенство.

Сразу тебе скажу, что есть два варианта его решения.

Вариант 1

Записываем нашу параболу как функцию:

По формулам определяем координаты вершины параболы (точно так же, как и при решении квадратных уравнений):

Посчитал? Что у тебя получилось?

Теперь возьмем еще две различных точки и посчитаем для них:

Начинаем строить одну ветвь параболы:

Симметрично отражаем наши точки на другую ветвь параболы:

А теперь возвращаемся к нашему неравенству.

Нам необходимо, чтобы было меньше нуля, соответственно:

Так как в нашем неравенстве стоит знак строго меньше, то конечные точки мы исключаем - «выкалываем».

Ответ:

Долгий способ, правда? Сейчас я покажу тебе более простой вариант графического решения на примере того же неравенства:

Вариант 2

Возвращаемся к нашему неравенству и отмечаем нужные нам промежутки:

Согласись, это намного быстрее.

Запишем теперь ответ:

Рассмотрим еще один способ решения, который упрощает и алгебраическую часть, но главное не запутаться.

Умножим левую и правую части на:

Попробуй самостоятельно решить следующее квадратное неравенство любым понравившимся тебе способом: .

Справился?

Смотри, как график получился у меня:

Ответ: .

Графическое решение смешанных неравенств

Теперь перейдем к более сложным неравенствам!

Как тебе такое:

Жуть, правда? Честно говоря, я понятия не имею, как решить такое алгебраически… Но, оно и не надо. Графически ничего сложного в этом нет! Глаза боятся, а руки делают!

Первое, с чего мы начнем, это с построения двух графиков:

Я не буду расписывать для каждого таблицу - уверена, ты отлично справишься с этим самостоятельно (еще бы, столько прорешать примеров!).

Расписал? Теперь строй два графика.

Сравним наши рисунки?

У тебя так же? Отлично! Теперь расставим точки пересечения и цветом определим, какой график у нас по идее должен быть больше, то есть. Смотри, что получилось в итоге:

А теперь просто смотрим, в каком месте у нас выделенный график находится выше, чем график? Смело бери карандаш и закрашивай данную область! Она и будет решением нашего сложного неравенства!

На каких промежутках по оси у нас находится выше, чем? Верно, . Это и есть ответ!

Ну вот, теперь тебе по плечу и любое уравнение, и любая система, и уж тем более любое неравенство!

КОРОТКО О ГЛАВНОМ

Алгоритм решения уравнений с использованием графиков функций:

  1. Выразим через
  2. Определим тип функции
  3. Построим графики получившихся функций
  4. Найдем точки пересечения графиков
  5. Корректно запишем ответ (с учетом ОДЗ и знаков неравенств)
  6. Проверим ответ (подставим корни в уравнение или систему)

Более подробно о построении графиков функций, смотри в теме « ».

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!