Что такое положительная степень окисления. Как расставлять и как определить степень окисления элементов

Степени окисления элементов. Как найти степени окисления?

1) В простом веществе степень окисления любого элемента равна 0. Примеры: Na 0 , H 0 2 , P 0 4 .

2) Необходимо запомнить элементы, для которых характерны неизменные степени окисления. Все они перечислены в таблице.


3) Поиск степеней окисления остальных элементов основан на простом правиле:

В нейтральной молекуле сумма степеней окисления всех элементов равна нулю, а в ионе - заряду иона.


Рассмотрим применение этого правила на простых примерах.

Пример 1 . Необходимо найти степени окисления элементов в аммиаке (NH 3).

Решение . Мы уже знаем (см. 2), что ст. ок. водорода равна +1. Осталось найти эту характеристику для азота. Пусть х - искомая степень окисления. Составляем простейшее уравнение: х + 3*(+1) = 0. Решение очевидно: х = -3. Ответ: N -3 H 3 +1 .


Пример 2 . Укажите степени окисления всех атомов в молекуле H 2 SO 4 .

Решение . Степени окисления водорода и кислорода уже известны: H(+1) и O(-2). Составляем уравнение для определения степени окисления серы: 2*(+1) + х + 4*(-2) = 0. Решая данное уравнение, находим: х = +6. Ответ: H +1 2 S +6 O -2 4 .


Пример 3 . Рассчитайте степени окисления всех элементов в молекуле Al(NO 3) 3 .

Решение . Алгоритм остается неизменным. В состав "молекулы" нитрата алюминия входит один атом Al(+3), 9 атомов кислорода (-2) и 3 атома азота, степень окисления которого нам и предстоит вычислить. Соответствующее уравнение: 1*(+3) + 3х + 9*(-2) = 0. Ответ: Al +3 (N +5 O -2 3) 3 .


Пример 4 . Определите степени окисления всех атомов в ионе (AsO 4) 3- .

Решение . В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е., -3. Уравнение: х + 4*(-2) = -3. Ответ: As(+5), O(-2).


А можно ли определить степени окисления сразу нескольких элементов, пользуясь похожим уравнением? Если рассматривать данную задачу с точки зрения математики, ответ будет отрицательным. Линейное уравнение с двумя переменными не может иметь однозначного решения. Но ведь мы решаем не просто уравнение!

Пример 5 . Определите степени окисления всех элементов в (NH 4) 2 SO 4 .

Решение . Степени окисления водорода и кислорода известны, серы и азота - нет. Классический пример задачи с двумя неизвестными! Будем рассматривать сульфат аммония не как единую "молекулу", а как объединение двух ионов: NH 4 + и SO 4 2- . Заряды ионов нам известны, в каждом из них содержится лишь один атом с неизвестной степенью окисления. Пользуясь опытом, приобретенным при решении предыдущих задач, легко находим степени окисления азота и серы. Ответ: (N -3 H 4 +1) 2 S +6 O 4 -2 .

Вывод: если в молекуле содержится несколько атомов с неизвестными степенями окисления, попробуйте "разделить" молекулу на несколько частей.


Пример 6 . Укажите степени окисления всех элементов в CH 3 CH 2 OH.

Решение . Нахождение степеней окисления в органических соединениях имеет свою специфику. В частности, необходимо отдельно находить степени окисления для каждого атома углерода. Рассуждать можно следующим образом. Рассмотрим, например, атом углерода в составе метильной группы. Данный атом С соединен с 3 атомами водорода и соседним атомом углерода. По связи С-Н происходит смещение электронной плотности в сторону атома углерода (т. к. электроотрицательность С превосходит ЭО водорода). Если бы это смещение было полным, атом углерода приобрел бы заряд -3.

Атом С в составе группы -СН 2 ОН связан с двумя атомами водорода (смещение электронной плотности в сторону С), одним атомом кислорода (смещение электронной плотности в сторону О) и одним атомом углерода (можно считать, что смещения эл. плотности в этом случае не происходит). Степень окисления углерода равна -2 +1 +0 = -1.

Ответ: С -3 H +1 3 C -1 H +1 2 O -2 H +1 .

Copyright Repetitor2000.ru, 2000-2015

Формальный заряд атома в соединениях — вспомогательная величина, обычно ее используют в описаниях свойств элементов в химии. Этот условный электрический заряд и есть степень окисления. Его значение изменяется в результате многих химических процессов. Хотя заряд является формальным, он ярко характеризует свойства и поведение атомов в окислительно-восстановительных реакциях (ОВР).

Окисление и восстановление

В прошлом химики использовали термин «окисление», чтобы описать взаимодействие кислорода с другими элементами. Название реакций произошло от латинского наименования кислорода - Oxygenium. Позже выяснилось, что другие элементы тоже окисляют. В этом случае они восстанавливаются — присоединяют электроны. Каждый атом при образовании молекулы изменяет строение своей валентной электронной оболочки. В этом случае появляется формальный заряд, величина которого зависит от количества условно отданных или принятых электронов. Для характеристики этой величины ранее применяли английский химический термин "oxidation number", который в переводе означает «окислительное число». При его использовании исходят из допущения, что связывающие электроны в молекулах или ионах принадлежат атому, обладающему более высоким значением электроотрицательности (ЭО). Способность удерживать свои электроны и притягивать их от других атомов хорошо выражена у сильных неметаллов (галогенов, кислорода). Противоположными свойствами обладают сильные металлы (натрий, калий, литий, кальций, другие щелочные и щелочноземельные элементы).

Определение степени окисления

Степенью окисления называют заряд, который атом приобрел бы в том случае, если бы принимающие участие в образовании связи электроны полностью сместились к более электроотрицательному элементу. Есть вещества, не имеющие молекулярного строения (галогениды щелочных металлов и другие соединения). В этих случаях степень окисления совпадает с зарядом иона. Условный или реальный заряд показывает, какой процесс произошел до того, как атомы приобрели свое нынешнее состояние. Положительное значение степени окисления — это общее количество электронов, которые были удалены из атомов. Отрицательное значение степени окисления равно числу приобретенных электронов. По изменению состояния окисления химического элемента судят о том, что происходит с его атомами в ходе реакции (и наоборот). По цвету вещества определяют, какие произошли перемены в состоянии окисления. Соединения хрома, железа и ряда других элементов, в которых они проявляют разную валентность, окрашены неодинаково.

Отрицательное, нулевое и положительное значения степени окисления

Простые вещества образованы химическими элементами с одинаковым значением ЭО. В этом случае связывающие электроны принадлежат всем структурным частицам в равной степени. Следовательно, в простых веществах элементам несвойственно состояние окисления (Н 0 2 , О 0 2 , С 0). Когда атомы принимают электроны или общее облако смещается в их сторону, заряды принято писать со знаком "минус". Например, F -1 ,О -2 , С -4 . Отдавая электроны, атомы приобретают реальный или формальный положительный заряд. В оксиде OF 2 атом кислорода отдает по одному электрону двум атомам фтора и находится в состоянии окисления О +2 . Считают, что в молекуле или многоатомном ионе более электроотрицательные атомы получают все связывающие электроны.

Сера — элемент, проявляющий разные валентность и степени окисления

Химические элементы главных подгрупп зачастую проявляют низшую валентность равную VIII. Например, валентность серы в сероводороде и сульфидах металлов — II. Для элемента характерны промежуточные и высшая валентность в возбужденном состоянии, когда атом отдает один, два, четыре или все шесть электронов и проявляет соответственно валентности I, II, IV, VI. Такие же значения, только со знаком "минус" или "плюс", имеют степени окисления серы:

  • в сульфиде фтора отдает один электрон: -1;
  • в сероводороде низшее значение: -2;
  • в диоксиде промежуточное состояние: +4;
  • в триоксиде, серной кислоте и сульфатах: +6.

В своем высшем состоянии окисления сера только принимает электроны, в низшей степени — проявляет сильные восстановительные свойства. Атомы S +4 могут проявлять в соединениях функции восстановителей или окислителей в зависимости от условий.

Переход электронов в химических реакциях

При образовании кристалла поваренной соли натрий отдает электроны более электроотрицательному хлору. Степени окисления элементов совпадают с зарядами ионов: Na +1 Cl -1 . Для молекул, созданных путем обобществления и смещения электронных пар к более электроотрицательному атому, применимы только представления о формальном заряде. Но можно предположить, что все соединения состоят из ионов. Тогда атомы, притягивая электроны, приобретают условный отрицательный заряд, а отдавая, — положительный. В реакциях указывают, какое число электронов смещается. Например, в молекуле диоксида углерода С +4 О - 2 2 указанный в верхнем правом углу индекс при химическом символе углерода отображает количество электронов, удаленных из атома. Для кислорода в этом веществе характерно состояние окисления -2. Соответствующий индекс при химическом знаке О — количество добавленных электронов в атоме.

Как подсчитать степени окисления

Подсчет количества отданных и присоединенных атомами электронов может отнять много времени. Облегчают эту задачу следующие правила:

  1. В простых веществах степени окисления равны нулю.
  2. Сумма окисления всех атомов или ионов в нейтральном веществе равна нулю.
  3. В сложном ионе сумма степеней окисления всех элементов должна соответствовать заряду всей частицы.
  4. Более электроотрицательный атом приобретает отрицательное состояние окисления, которое записывают со знаком "минус".
  5. Менее электроотрицательные элементы получают положительные степени окисления, их записывают со знаком "плюс".
  6. Кислород в основном проявляет степень окисления, равную -2.
  7. Для водорода характерное значение: +1, в гидридах металлов встречается: Н-1.
  8. Фтор — наиболее электроотрицательный из всех элементов, его состояние окисления всегда равно -4.
  9. Для большинства металлов окислительные числа и валентности совпадают.

Степень окисления и валентность

Большинство соединений образуются в результате окислительно-восстановительных процессов. Переход или смещение электронов от одних элементов к другим приводит к изменению их состояния окисления и валентности. Зачастую эти величины совпадают. В качестве синонима к термину «степень окисления» можно использовать словосочетание «электрохимическая валентность». Но есть исключения, например, в ионе аммония азот четырехвалентен. Одновременно атом этого элемента находится в состоянии окисления -3. В органических веществах углерод всегда четырехвалентен, но состояния окисления атома С в метане СН 4 , муравьином спирте СН 3 ОН и кислоте НСООН имеют другие значения: -4, -2 и +2.

Окислительно-восстановительные реакции

К окислительно-восстановительным относятся многие важнейшие процессы в промышленности, технике, живой и неживой природе: горение, коррозия, брожение, внутриклеточное дыхание, фотосинтез и другие явления.

При составлении уравнений ОВР подбирают коэффициенты, используя метод электронного баланса, в котором оперируют следующими категориями:

  • степени окисления;
  • восстановитель отдает электроны и окисляется;
  • окислитель принимает электроны и восстанавливается;
  • число отданных электронов должно быть равно числу присоединенных.

Приобретение электронов атомом приводит к понижению его степени окисления (восстановлению). Утрата атомом одного или нескольких электронов сопровождается повышением окислительного числа элемента в результате реакций. Для ОВР, протекающих между ионами сильных электролитов в водных растворах, чаще используют не электронный баланс, а метод полуреакций.

При изучении ионной и ковалентной полярной химической связи вы знакомились со сложными веществами, состоящими из двух химических элементов. Такие вещества называют би парными (от лат. би — «два») или двухэлементными.

Вспомним типичные бпнарные соединения, которые мы привели в качестве примера для рассмотрения механизмов образования ионной и ковалентноЙ полярной химической связи : NaHl — хлорид натрия и НСl — хлороводород. В первом случае связь ионная: атом натрия передал свой внешний электрон атому хлора и превратился при этом в ион с зарядом -1. а атом хлора принял электрон и превратился в ион с зарядом -1. Схематически процесс превращения атомов в ионы можно изобразить так:

В молекуле же НСl связь образуется за счет спаривания не-спаренных внешних электронов и образования общей электронной пары атомов водорода и хлора.

Правильнее представлять образование ковалентной связи в молекуле хлороводорода как перекрывание одноэлектронного s-облака атома водорода с одноэлектронным p-облаком атома хлора:

При химическом взаимодействии общая электронная пара смещена в сторону более электроотрицательного атома хлора:

Такие условные заряды называются степенью окисления . При определении этого понятия условно предполагают, что в ковалентных полярных соединениях связующие электроны полностью перешли к более электроотрицательному атому, а потому соединения состоят только из положительно и отрицательно заряженных ионов.

— это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (и ионные, и ковалентно-полярные) состоят только из ионов.

Степень окисления может иметь отрицательное, положительное или нулевое значения, которые обычно ставятся над символом элемента сверху, например:

Отрицательное значение степени окисления имеют те атомы, которые приняли электроны от других атомов пли к которым смещены общие электронные пары, то есть атомы более электроотрицательных элементов. Фтор всегда имеет степень окисления -1 во всех соединениях. Кислород , второй после фтора по значению элекгроотрицательности элемент, почти всегда имеет степень окисления -2, кроме соединений со фтором, например:

Положительное значение степени окисления имеют те атомы, которые отдают свои электроны другим атомам или от которых оттянуты общие электронные пары, то есть атомы менее электроотрицательных элементов. Металлы всегда имеют положительную степень окисления. У металлов главных подгрупп:

I группы во всех соединениях степень окисления равна +1,
II группы равна +2. III группы — +3, например:

В соединениях суммарная степень окисления всегда равна нулю. Зная это и степень окисления одного из элементов, всегда можно найти степень окисления другого элемента по формуле бинарного соединения. Например, найдем степень окисления хлора в соединении Сl2О2. Обозначим степень окисления -2
кислорода: Сl2О2. Следовательно, семь атомов кислорода будут иметь общий отрицательный заряд (-2) 7 =14. Тогда общий заряд двух атомов хлора будет равен +14, а одного атома хлора:
(+14):2 = +7.

Аналогично, зная степени окисления элементов, можно составить формулу соединения, например карбида алюминия (соединения алюминия и углерода). Запишем знаки алюминия н углерода рядом АlС, причем сначала знак алюминия, так как это металл. Определим по таблице элементов Менделеева число внешних электронов: у Аl — 3 электрона, у С — 4. Атом алюминия отдаст свои 3 внешних электрона углероду и получит при этом степень окисления +3, равную заряду иона. Атом углерода, наоборот, примет недостающие до "заветной восьмерки" 4 электрона и получит при этом степень окисления -4.

Запишем эти значения в формулу: АlС, и найдем наименьшее общее кратное для них, оно равно 12. Затем рассчитаем индексы:

Знать степени окисления элементов необходимо и для того, чтобы уметь правильно называть химическое соединение.

Названия бинарных соединений состоят из двух слов — названий образующих их химических элементов. Первое слово обозначает электроотрицательную часть соединения — неметалл, его латинское название с суффиксом -ид стоит всегда в именительном падеже. Второе слово обозначает электроположительную часть — металл или менее электроотрицательный элемент, его название всегда стоит в родительном падеже. Если же электроположительный элемент проявляет разные степени окисления, то это отражают в названии, обозначив степень окисления римской цифрой, которая ставится в конце.

Чтобы химики разных стран понимали друг друга, потребовалось создание единой терминологии и номенклатуры веществ. Принципы химической номенклатуры были впервые разработаны французскими химиками А. Лавуазье, А.Фурктуа, Л.Гитоном и К.Бертолле в 1785г. В настоящее время Международный союз теоретической и прикладной химии (ИЮПАК) координирует деятельность ученых рядных стран и издает рекомендации по номенклятурс веществ и терминологии, используемой к химии.

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

Элемент

Степень окисления практически во всех соединениях

Исключения

водород H +1 Гидриды щелочных и щелочно-земельных металлов, например:
кислород O -2 Пероксиды водорода и металлов:

Фторид кислорода —

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = № группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

Запишем формулу серной кислоты:

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

Степень окисления кислорода во всех сложных веществах равна -2 (кроме пероксидов и фторида кислорода OF 2). Расставим известные степени окисления:

Обозначим степень окисления серы как x :

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

Т.е. мы получили следующее уравнение:

Решим его:

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение. Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы NH 4 + (заряд данного катиона можно посмотреть в таблице растворимости). Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона NH 4 + , заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами NH 4 + и анионами Cr 2 O 7 2- .

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

Т.е. мы получаем два независимых уравнения:

Решая которые, находим x и y :

Таким образом, в дихромате аммония степени окисления азота -3, водорода +1, хрома +6, а кислорода -2.

Как определять степени окисления элементов в органических веществах можно почитать .

Валентность

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов

2) неподеленных электронных пар на орбиталях валентных уровней

3) пустых электронных орбиталей валентного уровня

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных () орбиталей валентного уровня. Наличие таких орбиталей на заполняемом уровне приводит к тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH 3), азотистой кислоты (HNO 2), треххлористого азота (NCl 3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но также и тогда, когда один атом, имеющий неподеленную пару электронов — донор() предоставляет ее другому атому с вакантной () орбиталью валентного уровня (акцептору). Т.е. для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии. Атом азота не имеет d -подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO 3 или оксида азота N 2 O 5 ? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Пунктирной линией на иллюстрации изображена так называемая делокализованная π -связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O 3 , бензола C 6 H 6 и т.д.

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d -подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s -орбитали:

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях. Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа. Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом кислорода не имеет на внешнем уровне d -подуровня, распаривание электронов s и p- орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода H 2 S.

Как мы видим, у атома серы на внешнем уровне появляется d -подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p -подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO 2 , SF 4 , SOCl 2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s -подуровне, внешний энергетический уровень приобретает конфигурацию:

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO 3 , H 2 SO 4 , SO 2 Cl 2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Инструкция

В результате образуется комплексное соединение – тетрахлораурат водорода. Комплексообразователем в нем является ион золота, лигандами – ионы хлора, внешней сферой – ион водорода. Как же определить степени окисления элементов в этом комплексном соединении ?

Прежде всего определите, какой из элементов, входящих в состав молекулы, самый электроотрицательный, то есть кто будет перетягивать к себе общую электронную плотность. Это, хлор, поскольку он в верхней правой части таблицы Менделеева, и по уступает только фтору и кислороду. Следовательно, его степень окисления будет со знаком «минус». А какова величина степени окисления хлора?

Хлор, как и все другие галогены, расположен в 7-й группе таблицы Менделеева, на его внешнем электронном уровне находится 7 электронов. Перетянув на этот уровень еще один электрон, он перейдет в устойчивое положение. Таким образом, его степень окисления будет равна -1. А поскольку в этом комплексном соединении четыре иона хлора, то суммарный заряд будет равняться -4.

Но сумма величин степеней окисления элементов, входящих в состав молекулы, должна быть равной нулю, ведь любая молекула электрически нейтральна. Таким образом, -4 должен быть уравновешен положительным зарядом +4, за счет водорода и золота.

Вам понадобится

  • Школьный учебник по химии 8-9 класс любого автора, таблица Менделеева, таблица электроотрицательности элементов (печатаются в школьных учебниках по химии).

Инструкция

Для начала необходимо обозначить, что степень - это понятие , принимающее связи за , то есть не углубляющиеся в строение. Если элемент находится в свободном состоянии, то это самый простой случай - образуется простое вещество, а значит степень окисления его равна нулю. Так например, водород, кислород, азот, фтор и т.д.

В сложных веществах все обстоит иначе: электроны между атомами распределены неравномерно, и именно степень окисления помогает определить количество отданных или принятых электронов. Степень окисления может положительной и отрицательной. При плюсе электроны отдаются, при минусе принимаются. Некоторые элементы свою степень окисления сохраняют в различных соединениях, но многие этой особенностью не отличаются. Нужно помнить немаловажное правило - сумма степеней окисления всегда равна нулю. Простейший пример, газ СО: зная, что степень окисления кислорода в преобладающем большинстве случаев равна -2 и используя вышеобозначенное правило, можно вычислить степень окисления для С. В сумме с -2 ноль дает только +2, а значит степень окисления углерода +2. Усложним задачу и возьмем для вычислений газ СО2: степень окисления кислорода по-прежнему остается -2, но молекул его в данном случае две. Следовательно, (-2) * 2 = (-4). Число, в сумме с -4 дающее ноль, +4, то есть в этом газе имеет степень окисления +4. Пример посложнее: Н2SO4 - у водорода степень окисления +1, у кислорода -2. Во взятом соединении 2 водорода и 4 кислорода, т.е. будут, соответственно, +2 и -8. Для того чтобы в сумме получить ноль, нужно добавить 6 плюсов. Значит, степень окисления серы +6.

Когда в соединении сложно определить, где плюс, где минус, необходима электроотрицательности (ее несложно найти в учебнике по общей ). Металлы часто имеют положительную степень окисления , а неметаллы отрицательную. Но например, PI3 - оба элемента неметаллы. В таблице указано, что электроотрицательность йода равна 2,6, а 2,2. При сравнении выясняется, что 2,6 больше, чем 2,2, то есть электроны стягиваются в сторону йода (йод имеет отрицательную степень окисления ). Следуя приведенным несложным примерам, можно легко определить степень окисления любого элемента в соединениях.

Обратите внимание

Не нужно путать металлы и неметаллы, тогда степень окисления будет проще найти и не запутаться.

Степенью окисления называют условный заряд атома в молекуле. При этом предполагают, что все связи имеют ионный характер. Иначе говоря, окисления характеризует возможность элемента образовывать ионную связь.

Вам понадобится

  • - таблица Менделеева.

Инструкция

В соединении сумма степеней атомов равна заряду этого соединения. Значит, в простом веществе, например, Na или H2, степень окисления элемента равна нулю.

Степень окисления кислорода в соединениях обычно равна -2. Например, в воде H2O два атома водорода и один атом кислорода. Действительно, -2+1+1 = 0 - в левой части выражении стоит сумма степеней окисления всех входящих в соединение атомов. В СaO кальций имеет степень окисления +2, а - -2. Исключения из этого - соединения OF2 и H2O2.
У степень окисления всегда равна -1.

Обычно максимальная положительная степень окисления элемента совпадает с номером его группы в периодической таблицы элементов Менделеева. Максимальная степень окисления равна элемента минус восемь. Пример - хлор в седьмой группе. 7-8 = -1 - степень окисления . Исключение в этом правиле составляют фтор, кислород и железо - высшая степень окисления ниже номера их группы. У элементов подгруппы меди высшая степень окисления больше 1.

Источники:

  • Степень окисления элементов в 2018

Степень окисления элемента – это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что соединения состоят только из ионов. Они могут иметь положительные, отрицательные, нулевые значения. У металлов степени окисления всегда положительные, у неметаллов могут быть как положительные, так и отрицательные. Это зависит от того, с каким атомом соединен атом неметалла.

Инструкция

Обратите внимание

Степень окисления может иметь дробные значения, например в магнитном железняке Fe2O3 равна +8/3.

Источники:

  • "Пособие по химии", Г.П. Хомченко, 2005.

Степень окисления - часто встречающаяся в учебниках химии характеристика элементов. Существует большое количество задач, направленных на определение этой степени, и многие из них вызывают у школьников и студентов трудности. Но, следуя определенному алгоритму, эти трудности можно избежать.

Вам понадобится

Инструкция

Запомните одно общее правило: любого элемента в простом веществе равна нулю ( простых веществ: Na, Mg, Al, - т.е. вещества, состоящие из одного элемента). Для определения вещества вначале просто запишите его, не теряя индексов - цифр, стоящих в правой нижней части рядом с символом элемента. Примером будет серная - H2SO4.

Далее откройте таблицу Д.И. Менделеева и найдите степень самого левого элемента в вашем веществе - в случае данного примера. По существующему правилу его степень окисления будет всегда положительна, и записывается она со знаком «+», так как он занимает крайнее левое положение в записи формулы вещества. Чтобы определить числовое значение степени окисления, обратите внимание на расположение элемента относительно групп. Водород находится в первой группе, следовательно, его степень окисления +1, но так как в серной два атома водорода (это нам показывает индекс), то над его символом напишите +2.

После этого определите степень окисления самого правого элемента в записи - кислорода в данном случае. Его условный (или степень окисления) будет всегда отрицателен, так как он занимает правое положение в записи вещества. Это правило справедливо во всех случаях. Числовое значение правого элемента находится в результате вычитания из номера его группы числа 8. В данном случае степень окисления кислорода равна -2 (6-8=-2), учитывая индекс - -8.

Чтобы найти условный заряд атома третьего элемента, воспользуйтесь правилом - сумма степеней окисления всех элементов должна быть равна нулю. Значит, условный заряд атома кислорода в веществе будет равен +6: (+2)+(+6)+(-8)=0. После этого запишите +6 над символом серы.

Источники:

  • как степени окисления химических элементов

Фосфор – химический элемент, имеющий 15-й порядковый номер в Таблице Менделеева. Он расположен в ее V группе. Классический неметалл, открытый алхимиком Брандом в 1669-м году. Существует три основных модификации фосфора: красный (входящий в состав смеси для розжига спичек), белый и черный. При очень высоких давлениях (порядка 8,3*10^10Па) черный фосфор переходит в другое аллотропическое состояние («металлический фосфор») и начинает проводить ток. фосфора в различных веществах?

Инструкция

Вспомните, степень . Это величина, соответствующая заряду иона в молекуле, при условии, что электронные пары, осуществляющие связь, смещены в сторону более электроотрицательного элемента (расположенного в Таблице Менделеева правее и выше).

Надо также знать главное условие: сумма электрических зарядов всех ионов, входящих в состав молекулы, с учетом коэффициентов всегда должна равняться нулю.

Степень окисления далеко не всегда количественно совпадает с валентностью. Наилучший пример – углерод, который в органических всегда имеет , равную 4, а степень окисления может быть равной и -4, и 0, и +2, и +4.

Какова степень окисления в молекуле фосфина PH3, например? С учетом всего дать на этот вопрос очень легко. Поскольку водород – самый первый элемент в Таблице Менделеева, он по определению не может располагаться там «правее и выше», чем . Следовательно, именно фосфор притянет к себе электроны водорода.

Каждый атом водорода, лишившись электрона, превратится в положительно заряженный ион окисления +1. Следовательно, суммарный положительный заряд равен +3. Значит, с учетом правила, гласящего, что суммарный заряд молекулы равен нулю, степень окисления фосфора в молекуле фосфина равна -3.

Ну, а какова степень окисления фосфора в оксиде P2O5? Возьмите Таблицу Менделеева. Кислород расположен в VI группе, правее фосфора, и к тому же выше, следовательно, он однозначно более электроотрицателен. То есть степень окисления кислорода в этом соединении будет со знаком «минус», а фосфора – со знаком «плюс». Каковы же эти степени, чтобы молекула в целом была нейтральна? Легко можно увидеть, что наименьшее общее кратное для чисел 2 и 5 – это 10. Следовательно, степень окисления кислорода -2, а фосфора +5.