Оборудование для гомогенизации молока и молочных продуктов. Гомогенизаторы Виды гомогенизаторов и их использование

Кисломолочные продукты играют важную роль в питании людей, особенно детей, лиц пожилого возраста и больных. Диетические свойства кисломолочных продуктов заключаются, прежде всего, в том, что они улучшают обмен веществ, стимулируют выделение желудочного сока и возбуждают аппетит. Наличие в их составе микроорганизмов, способных приживаться в кишечнике и подавлять гнилостную микрофлору, приводит к торможению гнилостных процессов и прекращению образования ядовитых продуктов распада белка, поступающих в кровь человека.

Немаловажной стадией при выработке кисломолочных продуктов является механическое воздействие на исходное сырье, т.е. гомогенизация. Она не только предотвращает отстаивание жира, но и способствует получению качественных кисломолочных продуктов с улучшенными консистенцией и вкусовыми свойствами, повышению его усвояемости организмом и более полному использованию содержащихся в нем жира и витаминов.

Гомогенизация стала стандартным производственным процессом, повсеместно практикуемым в качестве средства удерживания жировой эмульсии от разделения под действием силы тяжести. Голен (Gaulin), который разработал этот процесс в 1899 г., дал ему следующее определение на французском языке:»Fixer la composition des liquides».

Сначала гомогенизация приводит к расщеплению жировых шариков на гораздо более мелкие (см. рис.1). В результате уменьшается образование сливок и может также быть снижена тенденция шариков к слипанию или образованию крупных агломератов. В основном гомогенизированное молоко производится механическим способом. Оно на высокой скорости прогоняется сквозь узкий канал.

Разрушение жировых шариков достигается сочетанием таких факторов, как турбулентность и кавитация. В результате диаметр шариков уменьшается до 1 мкм, и эго сопровождается четырех — шестикратным увеличением площади промежуточной поверхности между жиром и плазмой. В результате перераспределения оболочечного вещества, полностью покрывавшего жировые шарики до их разрушения, вновь образованные шарики имеют недостаточно прочные и толстые оболочки. В состав этих оболочек также входят адсорбированные белки плазмы молока.

Фокс вместе со своими коллегами исследовал жиропротеиновый комплекс, полученный в результате гомогенизации молока. Он доказал, что казеин является протеиновым слагаемым комплекса и что он, возможно, связан с жировой фракцией через полярные силы притяжения. Он также установил, что казеиновые мицеллы активизируются в момент прохождения сквозь клапан гомогенизатора, вызывая предрасположенность к взаимодействию с жировой фазой.

Требования к процессу

Физическое состояние и концентрация жировой фракции во время гомогенизации влияют на размеры жировых шариков. Гомогенизация холодного молока, в котором жир в основном присутствует в затвердевшем состоянии, практически неосуществима. Обработка молока при температуре 30 — 35°С приводит к неполной дисперсии жировой фракции. Гомогенизация по-настоящему эффективна, когда вся жировая фаза находится в жидком состоянии, причем в концентрациях, нормальных для молока. Продукты с повышенной массовой долей жира имеют тенденцию к образованию крупных скоплений жировых шариков, особенно при низкой концентрации протеинов сыворотки на фоне высокого содержания жира. Сливки с жирностью выше 12% не могут быть успешно гомогенизированы при стандартном повышенном давлении, потому что из-за недостатка мембранного материала (казеина) шарики жира слипаются в гроздья. Для достаточно эффективной гомогенизации на один грамм жира должно приходиться 0,2 грамма казеина.

Процессы гомогенизации, проводящиеся под высоким давлением, приводят к образованию маленьких жировых шариков. С ростом температуры гомогенизации возрастает дисперсность жировой фазы — соразмерно с уменьшением вязкости молока при повышенных температурах.

Обычно гомогенизацию проводят при температуре от 55 до 80°С, под давлением от 10 до 25 МПа (100-250 бар), в зависимости от типа обрабатываемого продукта.

Характеристики потока

При прохождении потока по узкому каналу его скорость возрастает (см. рис.2). Скорость будет расти до тех пор, пока статическое давление не снизится до такого уровня, при котором жидкость закипает. Максимальная скорость главным образом зависит от давления на входе. Когда жидкость покидает щель, скорость снижается, а давление начинает расти. Кипение жидкости прекращается, и паровые пузырьки взрываются.

Теории гомогенизации

За годы применения процесса гомогенизации возникло много теорий, объясняющих механизм гомогенизации при высоком
давлении. Две теории, объясняющие дисперсную систему нефть -вода по аналогии с молоком, где диаметр большинства капель составляет меньше 1 мкм, не устарели до настоящего момента.
Они дают объяснение влияния различных параметров на эффективность гомогенизации.

Теория разрушения шариков турбулентными водоворотами («микровихрями») основана на том, что в жидкости, движущейся с высокой скоростью, возникает большое количество турбулентных микропотоков.

Если турбулентный микропоток сталкивается с соразмерной ему каплей, последняя разрушается. Данная теория позволяет предвидеть изменения результатов гомогенизации при изменении применяемого давления. Эта связь была обнаружена во многих исследованиях.

С другой стороны, теория кавитации гласит, что капельки жира разрушаются ударными волнами, возникающими при взрывах паровых пузырьков. Согласно этой теории, гомогенизация происходит при покидании жидкостью щели. Таким образом, противодавление, необходимое для кавитации, имеет в этом случае большую значимость. Это было подтверждено на практике. Однако гомогенизация возможна и без кавитации, но в таком случае она менее эффективна.

Рис.3 Разрушение жировых шариков на первой и второй ступенях гомогенизации.
1 После первой ступени
2 После второй ступени

Одноступенчатая и двухступенчатая гомогенизация

Гомогенизаторы могут быть оснащены одной гомогенизирующей головкой или двумя, последовательно соединенными. Отсюда название: одноступенчатая гомогенизация и двухступенчатая гомогенизация. Обе системы показаны на рис.5 и 6. При одноступенчатой гомогенизации весь перепад давления используется
в единственной ступени. При двухступенчатой гомогенизации суммарное
давление замеряется перед первой ступенью Р 1, и перед второй ступенью Р 2 .

Для достижения оптимальной эффективности гомогенизации обычно используется двухступенчатый вариант. Но желаемые результаты удается получить, если соотношение Р 2: Р 1 равняется примерно 0,2. Одноступенчатый вариант используется для гомогенизации

  • продукции с низкой жирностью,
  • продукции, требующей высокой вязкости (образования определенных агломератов).
  • в продуктах, для которых требуется низкая вязкость
  • для достижения максимальной эффективности гомогенизации (микронизации).

На рис.3 показано образование и разрушение скоплений жировых шариков на второй ступени гомогенизации.

Влияние гомогенизации на структуру и свойства молока

Эффект гомогенизации оказывает положительное воздействие на физическую структуру
и свойства молока и проявляется в следующем:

  • Уменьшение размеров жировых шариков, что предотвращает отстой сливок
  • Более белый и аппетитный цвет
  • Повышенная сопротивляемость окислению жира
  • Улучшенные аромат и вкус
  • Повышенная сохранность кисломолочных продуктов, изготовленных из гомогенизированного молока.

Однако гомогенизации свойственны и определенные недостатки. В их числе:

  • Невозможность сепарирования гомогенизированного молока
  • Несколько повышенная чувствительность к воздействию света — как солнечного, так и от люминесцентных ламп — может привести к возникновению так называемого солнечного привкуса
  • Пониженная термоустойчивость — особенно выражена при испытании первой ступени гомогенизации, гомогенизации обезжиренного молока и в других случаях, способствующих образованию скоплений жировых шариков
  • Непригодность молока для производства полутвердых и твердых сыров, так как сгусток будет плохо отделять сыворотку.

Гомогенизатор

Для обеспечения максимальной эффективности гомогенизации обычно требуются гомогенизаторы высокого давления.

Продукт поступает в насосный блок, где его давление повышается поршневым насосом. Уровень возникшего давления зависит от противодавления, определяемого расстоянием между поршнем и седлом в гомогенизирующей головке. Давление Р 1 всегда означает давление гомогенизации. Р 2 — это противодавление первой ступени гомогенизации или давление на входе во вторую ступень.

Рис.4 Гомогенизатор — это большой насос высокого давления с устройством противодавления.
1 Главный двигатель привода
2 Клиноременная передача
3 Указатель давления
4 Кривошипношатунный механизм
5 Поршень
6 Уплотнение поршня
7 Литой насосный блок из нержавеющей стали
8 Клапаны
9 Гомогенизирующая головка
10 Гидравлическая система


Рис.5 Одноступенчатая гомогенизация. Схема гомогенизирующей головки:
1 Клапан
2 Ударное кольцо
3 Седло
4 Гидравлический привод

Насос высокого давления

Поршневой насос приводится в движение мощным электродвигателем (поз. 1 на рис.4) через коленчатый вал и шатуны — эта передача преобразует вращение двигателя в возвратно-поступательное движение поршней насоса.

Поршни (поз. 5) перемещаются в блоке цилиндров высокого давления.
Они изготовлены из высокопрочного материала. Поршни оснащены двойными уплотнениями. В пространство между уплотнениями подается вода для охлаждения поршней. Туда же может подаваться горячий конденсат для предотвращения повторного обсеменения микроорганизмами продукта при работе гомогенизатора. Также возможно использование горячего конденсата для сохранения условий асептического производства продукта при работе гомогенизатора.

Гомогенизирующая головка

На рис.5 и 6 показаны гомогенизирующая головка и ее гидравлическая система. Поршневой насос поднимает давление молока с 300 кПа (3 бара) на входе до давления гомогенизации 10-15 МПа (100-240 бар), в зависимости от вида продукции. Давление на входе в первую ступень перед механизмом (давление гомогенизации) автоматически поддерживается неизменным. Давление масла на гидравлический поршень и давление гомогенизации на клапан уравновешивают друг друга. Гомогенизатор оборудован одним общим масляным баком, независимо от того, одноступенчатый это вариант или двухступенчатый. Однако в двухступенчатом гомогенизаторе есть две гидросистемы, и у каждой свой насос. Новое давление гомогенизации устанавливается изменением давления масла. Давление гомогенизации указывается на манометре высокого давления.

Процесс гомогенизации происходит на первой ступени. Вторая главным образом служит двум целям:

Созданию постоянного и управляемого противодавления в направлении первой ступени, обеспечивая тем самым оптимальные условия гомогенизации

Разрушению слипшихся гроздьев жировых шариков, образующихся сразу после гомогенизации (см. рис.3).

Обратите внимание, что давление гомогенизации — это давление перед первой ступенью, а не перепад давлений.

Детали гомогенизирующей головки обработаны на прецизионном шлифовальном станке. Ударное кольцо посажено на свое место таким образом, что его внутренняя поверхность перпендикулярна выходу из щели. Седло скошено под углом 5 градусов, чтобы продукт получал контролируемое ускорение, предотвращая таким образом ускоренный износ, неизбежный в ином случае.

Молоко под высоким давлением проникает между седлом и клапаном. Ширина щели составляет примерно 0,1 мм, что в 100 раз превышает диаметр жировых давления, произведенного поршневым насосом, преобразуется в кинетическую энергию. Часть этой энергии после прохождения через механизм снова преобразуется в давление. Другая часть высвобождается в виде тепла; каждые 40 бар падения давления после прохождения через механизм поднимают температуру на 1°С. На гомогенизацию затрачивается менее 1% всей этой энергии, и все же гомогенизация с помощью высокого давления пока остается наиболее эффективным методом из всех имеющихся на сегодняшний день.

Рис.6
Двухступенчатая гомогенизация.
1 Первая ступень
2 Вторая ступень

Эффективность гомогенизации

Цель гомогенизации зависит от способа её применения. Соответственно меняются и методы оценки эффективности.

В соответствии с законом Стокса, растущая скорость частицы определяется по следующей формуле, где: v — скорость

q — ускорение свободного падения p — размер частицы η hp — плотность жидкости η ip — плотность частицы t — вязкость

Или v = константа х р 2

Из формулы следует, что уменьшение размера частицы является эффективным способом уменьшения возрастания скорости. Следовательно, уменьшение размера частиц в молоке приводит к замедлению скорости отстаивания сливок.

Аналитические методы

Аналитические методы определения эффективности гомогенизации можно
разделить на две группы:

I. Определение скорости отстаивания сливок

Самый старый способ определения времени отстаивания сливок — это взять образец, выдержать его определенное время и затем проанализировать содержание жира в различных его слоях. На этом принципе построен метод USPH. Например, образец объемом в один литр выдерживается 48 часов, после чего определяется содержание жира в верхнем слое (100 мл), а также и во всем остальном молоке. Гомогенизация считается удовлетворительной, если массовой доли жира в нижнем слое в 0,9 раза меньше, чем в верхнем слое.

На этом же принципе построен метод NIZO. В соответствии с этим методом образец объемом, скажем, в 25 мл подвергается центрифугированию в течение 30 минут на скорости 1000 об/мин при температуре 40°С и радиусе 250 мм. После этого жирность 20 мл нижнего слоя делится на жирность всего образца и полученный результат умножается на 100. Это соотношение называется значением NIZO. Для пастеризованного молока оно обычно составляет 50-80%.

II. Фракционный анализ

Распределение размеров частиц или капель в образце можно определить хорошо разработанным методом с применением установки лазерной дифракции (см. рис.7), которая посылает лазерный луч в образец, находящийся в кювете. Степень рассеивания света будет находиться в зависимости от размеров и количества частиц, содержащихся в исследуемом молоке.

Результат приведен в виде графиков гранулометрического состава. Процент массовой доли жира представлен как функция размера частицы (размер жирового шарика). На рис.8 показаны три типовых графика распределения размеров жировых шариков. Обратите внимание на то, что при повышении давления гомогенизации график смещается влево.

Расход энергии и его влияние на температуру

Подводимая электрическая мощность, необходимая для гомогенизации, выражается следующей формулой:

Гомогенизатор в технологической линии

Обычно гомогенизатор устанавливается в начале линии, то есть до секции окончательного нагрева в теплообменнике. В большинстве пастеризационных установок по производству питьевого молока для потребительского рынка гомогенизатор стоит после первой регенеративной секции.

При производстве стерилизованного молока гомогенизатор обычно помещается в начале процесса высокотемпературной обработки, протекающей в системе с косвенным нагревом продукта, и всегда в конце процесса, проходящего в системе с прямым нагревом продукта, т.е. в асептической части установки после участка стерилизации продукта. В таком случае используется асептический вариант гомогенизатора, оснащенный специальными поршневыми уплотнениями, прокладками, стерильным конденсатором и специальными асептическими демпферами.

Асептический гомогенизатор устанавливается после секции стерилизации установок с прямым обогревом продукта в случаях производства молочных продуктов с массовой долей жира более 6 10% и/или с повышенным содержанием белка. Дело в том, что при очень высоких температурах обработки в молоке с высоким содержанием жира и/или протеинов образуются скопления жировых шариков и мицелл казеина. Расположенный после секции стерилизации асептический гомогенизатор разрушает эти агломерированные частицы.

Полная гомогенизация

Полная гомогенизация — наиболее распространенный способ гомогенизации питьевого молока и молока, предназначенного для производства кисломолочных продуктов. Жирность молока, а иногда и содержание
сухого обезжиренного остатка (при производстве йогурта, например) нормализуются до гомогенизации.

Раздельная гомогенизация

Раздельная гомогенизация означает, что основная часть обезжиренного молока ей не подвергается. Гомогенизируются сливки и небольшое количество обезжиренного молока. Этот способ гомогенизации обычно используется для пастеризованного питьевого молока. Основное достоинство раздельной гомогенизации — ее относительная экономичность. Общий расход энергии снижается примерно до 65% вследствие меньшего количества молока, проходящего через гомогенизатор.

Поскольку наибольшая эффективность гомогенизации может быть достигнута в случае, если в молоке содержится не менее 0,2 г казеина на 1 г жира, рекомендуемая максимальная жирность составляет 12%. Часовая производительность установки, в которой проводится раздельная гомогенизация, может быть определена по далее приведенной формуле.

Производство пастеризованною нормализованного молока (Q sm) в час составит приблизительно 9690 л. Если мы подставим эту цифру в формулу 2, то получим,
что часовая производительность гомогенизатора равняется примерно 2900 л.,
то есть около трети его полной производительности.

Схема потоков в установке для частично гомогенизированного молока приведена на рис.10.

Влияние гомогенизированных молочных продуктов на организм человека

В начале 1970-х годов американский ученый К. Остер (К. Oster) выступил с гипотезой о том, что гомогенизация молока позволяет ферменту ксантиноксидаза проникать через кишечник в кровеносную систему. (Оксидаза — это фермент, который катализирует присоединение кислорода к субстрату вещества или отщепление от него водорода.) По утверждению Остера, оксидаза ксантина способствует процессу повреждения кровеносных сосудов и ведет к атеросклерозу.

Эта гипотеза была отвергнута учеными на том основании, что человеческий организм сам вырабатывает в тысячи раз большие количества этого фермента, чем теоретически могло бы привнести в него гомогенизированное молоко.

Итак, никакого вреда от гомогенизации молока быть не может. С точки зрения питательности гомогенизация никаких особых изменений не привносит, за исключением, пожалуй, того, что в гомогенизированных продуктах жир и протеин расщепляются быстрее и легче.

Тем не менее Остер прав в том, что процессы окисления могут приносить вред человеческому организму и что диета важна для здоровья.

Гомогенизаций называется механическая обработка прошедшего через молочные фильтры сырья, в результате которой шарики жира диспергируют (измельчаются) под действием внешней силы - давления, тока высокой частоты, ультразвука и прочее.

Зачем нужна гомогенизация?

При хранении налитого в молочные бидоны продукта, жир всплывает на поверхность за счет того, что он легче плазмы (обрата). Сырье отстаивается. Крупный комочек жира, поднимаясь в верхние слои, сталкивается с ему подобными. Под влиянием иммуноглобулинов, происходит агглютинация (склеивание отдельных элементов и выпадение их в осадок из однородной смеси). В результате, меняется консистенция и снижается качество, что не желательно. Если жировые шарики разбить на мелкие части, они не будут слипаться в пленку на поверхности.

Скорость всплытия жирового шарика зависит от его размеров – чем больше, тем быстрее. По формуле Стокса, она прямо пропорциональна квадрату радиуса комочка. Величина шариков жира лежит в пределах от 0,5 до 18 мкм. После гомогенизации, она уменьшается приблизительно в 10 раз (средний размер на выходе – 0,85 мкм). Это значит, что всплывать они будут в 100 раз медленнее. К тому же, у небольших комочков, размером меньше 1 мкм, силы взаимного отталкивания больше, чем притяжения.

Во время дробления жира, вещество его оболочки перераспределяется. Часть фосфатидов переходит в плазму, а на внешний покров мелких шариков идут плазменные белки. Благодаря перечисленным факторам, в молоке стабилизируется жировая эмульсия. При высокой степени дисперсности, процесс отстаивания не наблюдается, жир не всплывает, фляги для молока наполняются более качественным продуктом. Сливки, творог, масло и прочее, сделанные из гомогенизированного (однородного) сырья, имеют лучшие органолептические показатели и консистенцию, питательные вещества быстрее и полнее усваиваются организмом.

Гомогенизация способствует тому, чтобы:

  • Пастеризованные молоко или сливки, разлитые по емкостям из нержавеющей стали , приобрели однородную жирность, цвет и вкус.
  • Стерилизованные молоко и сливки – лучше хранились.
  • На кисломолочных продуктах не образовывалась жировая пленка, а белковые сгустки были прочнее и с лучшей консистенцией.
  • В молочных сгущенных консервах, при длительном хранении, не выделялась жировая фаза.
  • В цельном сухом молоке оказалось меньше свободного жира, без оболочек из белка – это приводит к окислению.
  • У восстановленных кисломолочных напитков, сливок и молока не появился водянистый привкус, а вкус продукта стал более насыщенным.
  • Молоко с наполнителем (например, какао), получилось более вязким, без осадка, с лучшим вкусом.

Механизм гомогенизации

Гомогенизацию рекомендуется делать после того, как молоко прошло через ванну длительной пастеризации .

Для этого применяются разные виды устройств. Самые распространенные – агрегаты клапанного типа. По своей сути они являются плунжерными насосами высокого давления. Жидкость пропускается сквозь очень маленькие отверстия. При этом резко увеличивается скорость потока. Жировые шарики дробятся, образовавшиеся мелкие комочки сразу покрываются белковой оболочкой. О том, почему так происходит, будет рассказано во второй части статьи.

Наибольшее распространение получили клапанные гомогенизаторы, основными узлами которых являются насос высокого давления и гомогенизирующая головка.

На рис. показана двухступенчатая гомогенизирующая головка, состоящая из корпуса 3 и клапанного устройства, основными частями которого являются седло клапана 1 и клапан 2. Клапан связан со штоком, на выступ которого давит пружина 6. Сила сжатия пружины регулируется путем перемещения накидной гайки 5 со штурвалом, которая вместе с пружиной, штоком 7 и стаканом 8 образует нажимное устройство 4.

Рис. Двухступенчатая гомогенизирующая головка:

I - первая ступень; II - вторая ступень

Жидкость, нагнетаемая насосом под тарелку клапана, давит на тарелку и отодвигает клапан от седла, преодолевая сопротивление пружины. В образующуюся между клапаном и седлом щель высотой от 0,05 до 2,5 мм проходит с большой скоростью жидкость и при этом гомогенизируется. На следующей ступени процесс повторяется.

По типу гомогенизирующей головки гомогенизаторы можно подразделить на одно-, двух- и многоступенчатые. На практике применяют только одно- и двухступенчатые, так как многоступенчатые не оправдывают себя, поскольку приводят к громоздкости конструкции, неудобству в эксплуатации и незначительному улучшению эффекта гомогенизации по сравнению с двухступенчатыми.

Основными показателями работы гомогенизаторов являются универсальная рабочая и кавитационная характеристики. Универсальная характеристика гомогенизатора представляет зависимость между его производительностью, затрачиваемой мощностью и КПД. Она дает представление об уровне совершенства конструкции гомогенизатора и его техническом состоянии.

Снятие кавитационной характеристики требует установления мановакуумметра на всасывающей стороне гомогенизатора. Начало кавитации определяют по началу снижения подачи более чем на 2 %.

Кавитационная кривая показывает особенности работы гомогенизатора на его всасывающей стороне и позволяет решить вопрос об улучшении условий работы в конкретном случае.

Гомогенизатор А1-ОГМ (рис.), предназначенный для получения тонкоизмельченного однородного продукта, состоит из электродвигателя 1, станины 2, кривошипно-шатунного механизма 3 с системами смазки 7 и охлаждения, плунжерного блока 4 с гомогенизирующей 6 и манометрической 5 головками и предохранительным клапаном.


Рис. Гомогенизатор А1-ОГМ

Принцип работы гомогенизатора заключается в нагнетании продукта через узкую щель между седлом и клапаном гомогенизирующей головки. Давление продукта перед клапаном 20...25 МПа, после клапана - близко к атмосферному. При таком резком перепаде давления наряду со значительным увеличением скорости продукт измельчается.

Гомогенизатор представляет собой трехплунжерный насос. Каждый из трех плунжеров, совершая возвратно-поступательное движение, всасывает жидкость из приемного канала, закрытого всасывающим клапаном, и нагнетает ее через нагнетательный клапан в гомогенизирующую головку под давлением 20...25 МПа.

Гомогенизирующая головка является наиболее важной и специфической частью гомогенизатора. Она представляет собой стальной корпус, в котором находится цилиндрический центрируемый клапан. Под давлением жидкости клапан поднимается, образуя кольцевую щель, через которую жидкость проходит с большой скоростью и затем выводится через штуцер из гомогенизатора.

Внутри станины шарнирно закреплена плита, положение которой регулируется винтами. На плите установлен электродвигатель 1, приводящий в движение кривошипно-шатунный механизм 3 через клиноременную передачу. В корпусе 2, представляющем собой резервуар с наклонным дном, размещены кривошипно-шатунный механизм 3, система охлаждения и масляный сетчатый фильтр. Система охлаждения предназначена для подвода холодной воды к плунжерам. Она включает в себя змеевик, уложенный на дне корпуса 2, перфорированную трубку над плунжерами и патрубки для подвода и отвода воды. Система смазки служит для подачи масла к шейкам коленчатого вала для уменьшения трения.

Техническая характеристика гомогенизатора А1 -ОГМ приведена в табл.

Гомогенизатор К5-ОГА-Ю (рис.) предназначен для дробления и равномерного распределения жировых шариков в молоке и жидких молочных продуктах, а также в смесях для мороженого.


Рис. Гомогенизатор К5-ОГА-Ю

Он представляет собой пятиплунжерный насос высокого давления с гомогенизирующей головкой. Он состоит из станины 1 с приводом, кривошипно-шатунного механизма 5 с системами смазки и охлаждения, плунжерного блока 14 с гомогенизирующей 13 и манометрической 12 головками и предохранительным клапаном. Внутри плунжерного блока 14 имеется плунтер 15, соединенный с ползуном 11. Привод гомогенизатора осуществляется от электродвигателя 17 через ведущий 20 и ведомый 21 шкивы и клиноременную передачу. Внутри станины 1 шарнирно закреплена плита 18, положение которой регулируется винтами 2. Станина установлена на шести варьируемых по высоте опорах 19.

Кривошипно-шатунный механизм 5 состоит из литого чугунного корпуса, коленчатого вала 7, установленного на двух роликоподшипниках, шатунов 8 с крышками 6 и вкладышами 9, ползунов 11, шарнирно соединенных с шатунами 8 при помощи пальцев 10, стаканов и уплотнений. Внутренняя полость корпуса кривошипно-шатунного механизма является масляной ванной. В задней стенке корпуса смонтированы указатель уровня масла 4 и сливная пробка 3. В корпусе, представляющем собой резервуар с наклонным дном, размещены кривошипно-шатунный механизм 5, система охлаждения, масляный сетчатый фильтр и маслонасос 22.

Гомогенизатор имеет принудительную систему смазки наиболее нагруженных трущихся пар, которая применяется в сочетании с разбрызгиванием масла внутри корпуса. Охлаждение масла проводится водопроводной водой посредством змеевика 16 охлаждающего устройства, уложенного на дне корпуса, а плунжеры охлаждаются водопроводной водой, попадающей на них через отверстия в трубе. В системе охлаждения установлено реле протока, предназначенное для контроля за протеканием воды.

Регулированием давления пружины на клапан достигается оптимальный режим гомогенизации для различных продуктов.

Техническая характеристика гомогенизатора К5-ОГА-10 приведена в табл.

Таблица. Техническая характеристика гомогенизаторов

Показатель

Производительность, л/ч

Рабочее давление, МПа

Температура продукта, поступающего на

гомогенизацию, °С

Электродвигатель:

мощность, кВт

частота вращения, мин"

Частота вращения коленчатого вала, мин

Количество плунжеров

Ход плунжера, мм

Число ступеней гомогенизации

Габаритные размеры, мм

Масса, кг

Гомогенизатор А1-ОГ2-С (рис.) предназначен для механической обработки вязких молочных продуктов типа сливочных, плавленых и пластических сыров для придания однородности продукту с целью улучшения его качества.


Рис. Гомогенизатор А1-ОГ2-С

Гомогенизатор представляет собой горизонтально расположенный трехплунжерный насос высокого давления с гомогенизирующим устройством 8.

Привод насоса осуществляется от электродвигателя 4 с помощью клиноременной передачи, ведомого 15 и ведущего 16 шкивов. Гомогенизатор состоит из следующих основных узлов: кривошипно-шатунного механизма 1, привода, плунжерного блока 9, гомогенизирующего устройства 8, предохранительного клапана 7, бункера, кожуха, станины 13.

Кривошипно-шатунный механизм 1 включает литой чугунный корпус, коленчатый вал 14, установленный на двух роликоподшипниках, шатуны 12 с крышками 2 и вкладышами, ползуны 10, шарнирно соединенные с шатунами 12 пальцами 11, стаканы и уплотнение. Внутренняя полость корпуса кривошипно-шатунного механизма является масляной ванной.

В задней стенке корпуса установлены указатель уровня масла и сливная пробка. Смазка трущихся деталей проводится разбрызгиванием масла. Корпус кривошипно-шатунного механизма закрыт крышкой, в которой имеется горловина с фильтрующей сеткой для залива масла. Привод гомогенизатора осуществляется от электродвигателя 4, который установлен на качающейся подмоторной плите 3, укрепленной на корпусе кривошипно-шатунного механизма 1. Натяжение клиновых ремней обеспечивается с помощью натяжных винтов 5.

Кривошипно-шатунный механизм крепится при помощи шпилек к станине 13, которая представляет собой сварную конструкцию, облицованную листовой сталью. На станине имеется съемная крышка 17, предназначенная для ограждения вращающихся и перемещающихся механизмов. В нижней части станины 13 установлена клеммная коробка 18.

Станина устанавливается на четырех регулируемых по высоте опорах 19. К корпусу кривошипно-шатунного механизма при помощи двух шпилек крепится плунжерный блок 9, который предназначен для всасывания продукта из бункера и нагнетания его под высоким давлением в гомогенизирующее устройство 8. Плунжерный блок 9 состоит из блока, плунжеров 6, полых цилиндрических стаканов с отверстиями в стенках. Всасывающие клапаны и уплотнения отсутствуют, в рабочие камеры плунжерного блока продукт непосредственно из бункера засасывается через полые цилиндрические стаканы.

Уплотнение плунжеров, учитывая малую текучесть расплавленной сырной массы, достигается путем точного изготовления с небольшими допусками сопряженных поверхностей плунжеров и отверстий стаканов.

К плунжерному блоку при помощи шпилек крепится гомогенизирующее устройство, предназначенное для осуществления гомогенизации продукта за счет прохода его с большой скоростью под высоким давлением через щель между клапаном и седлом.

Гомогенизирующее устройство 8 состоит из корпуса, прокладок, нагнетательных клапанов, седел клапанов, пружин, гомогенизирующего клапана с седлом, стакана, рукоятки.

Для контроля давления гомогенизации служит манометр, который крепится к торцу корпуса гомогенизирующего устройства. Сверху на гомогенизирующем устройстве расположен предохранительный клапан 7, предназначенный для ограничения повышения давления выше заданного. Он состоит из стакана, фланца, клапана, седла клапана, пружины, нажимного винта и колпака. Предохранительный клапан регулируется на рабочее давление гомогенизации с помощью винта.

Продукт, подлежащий гомогенизации, подается в бункер гомогенизатора, представляющий собой сварную емкость из нержавеющей стали.

При возвратно-поступательном перемещении плунжеров в рабочей полости плунжерного блока создается разрежение и продукт из бункера засасывается в рабочую полость, а затем плунжеры выталкивают продукт в гомогенизирующее устройство, где он под давлением 20 МПа с большой скоростью проходит через кольцевой зазор, образующийся между притертыми поверхностями гомогенизирующего клапана и его седлом. При этом продукт становится более однородным. Из гомогенизирующего устройства через патрубок он направляется по трубопроводу на дальнейшую обработку. На гомогенизаторе установлен амперметр, с помощью которого контролируются показания манометра.

Техническая характеристика гомогенизатора А1-ОГ2-С приведена в табл.

Гомогенизация - механическое дробления жировых шариков в молоке (сливках) с целью равномерного распределения жира в общей массе продукта и предотвращения его отстаивания. Разная плотность жира и плазмы в составе молока и сливок приводит к отделению жировой фракции при хранении продукции. Для того чтобы стабилизировать консистенцию молочной структуры и улучшить вкусовые качества дисперсной смеси используется гомогенизатор пищевых продуктов.

Гомогенизатор молочный производит на обрабатываемое сырье механическое воздействие. Процесс диспергирования обеспечивает стабилизацию высокодисперсной жировой эмульсии и придает продукту гомогенизированную консистенцию, а именно вещество в оболочке и структуре содержащегося в молоке жира подвергается перераспределению, мобилизуются плазменные белки, фосфатиды переходят с оболочки жировых шариков в плазму продукта.

Принцип работы

Принцип работы основных типов гомогенизатора для молока основан на разнице давления в системе, при котором происходит преобразование жидкостей с полидисперсными характеристиками в продукцию с однородной консистенцией. В оборудовании может быть установлена рабочая головка одно- или двухступенчатого типа. Последняя модификация агрегатов предназначена для обработки сырья с высоким процентом жирности.