Построить интервальный вариационный ряд распределения онлайн. Сводка и группировка статистических данных

Представляются в виде рядов распределения и оформляются в виде .

Ряд распределния является одним из видов группировок.

Ряд распределения — представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку.

В зависимости от признака, положенного в основу образования ряда распределения различают атрибутивные и вариационные ряды распределения:

  • Атрибутивными — называют ряды распределения, построенные по качественными признакам.
  • Ряды распределения, построенные в порядке возрастания или убывания значений количественного признака называются вариационными .
Вариационный ряд распределения состоит из двух столбцов:

В первом столбце приводятся количественные значения варьирующегося признака, которые называются вариантами и обозначаются . Дискретная варианта — выражается целым числом. Интервальная варианта находится в пределах от и до. В зависимости от типа варианты можно построить дискретный или интервальный вариационный ряд.
Во втором столбце содержится количество конкретных вариант , выраженное через частоты или частости:

Частоты — это абсолютные числа, показывающие столько раз в совокупности встречается данное значение признака, которые обозначают . Сумма всех частот равна должна быть равна численности единиц всей совокупности.

Частости () — это частоты выраженные в процентах к итогу. Сумма всех частостей выраженных в процентах должна быть равна 100% в долях единице.

Графическое изображение рядов распределения

Наглядно ряды распределения представляются при помощи графических изображений.

Ряды распределения изображаются в виде:
  • Полигона
  • Гистограммы
  • Кумуляты
  • Огивы

Полигон

При построении полигона на горизонтальной оси (ось абсцисс) откладывают значения варьирующего признака, а на вертикальной оси (ось ординат) — частоты или частости.

Полигон на рис. 6.1 построен по данным микропереписи населения России в 1994 г.

6.1. Распределение домохозяйств по размеру

Условие : Приводятся данные о распределении 25 работников одного из предприятий по тарифным разрядам:
4; 2; 4; 6; 5; 6; 4; 1; 3; 1; 2; 5; 2; 6; 3; 1; 2; 3; 4; 5; 4; 6; 2; 3; 4
Задача : Построить дискретный вариационный ряд и изобразить его графически в виде полигона распределения.
Решение :
В данном примере вариантами является тарифный разряд работника. Для определения частот необходимо рассчитать число работников, имеющих соответствующий тарифный разряд.

Полигон используется для дискретных вариационных рядов.

Для построения полигона распределения (рис 1) по оси абсцисс (X) откладываем количественные значения варьирующего признака — варианты, а по оси ординат — частоты или частости.

Если значения признака выражены в виде интервалов, то такой ряд называется интервальным.
Интервальные ряды распределения изображают графически в виде гистограммы, кумуляты или огивы.

Статистическая таблица

Условие : Приведены данные о размерах вкладов 20 физических лиц в одном банке (тыс.руб) 60; 25; 12; 10; 68; 35; 2; 17; 51; 9; 3; 130; 24; 85; 100; 152; 6; 18; 7; 42.
Задача : Построить интервальный вариационный ряд с равными интервалами.
Решение :

  1. Исходная совокупность состоит из 20 единиц (N = 20).
  2. По формуле Стерджесса определим необходимое количество используемых групп: n=1+3,322*lg20=5
  3. Вычислим величину равного интервала: i=(152 — 2) /5 = 30 тыс.руб
  4. Расчленим исходную совокупность на 5 групп с величиной интервала в 30 тыс.руб.
  5. Результаты группировки представим в таблице:

При такой записи непрерывного признака, когда одна и та же величина встречается дважды (как верхняя граница одного интервала и нижняя граница другого интервала), то эта величина относится к той группе, где эта величина выступает в роли верхней границы.

Гистограмма

Для построения гистограммы по оси абсцисс указывают значения границ интервалов и на их основании строят прямоугольники, высота которых пропорциональна частотам (или частостям).

На рис. 6.2. изображена гистограмма распределения населения России в 1997 г. по возрастным группам.

Рис. 6.2. Распределение населения России по возрастным группам

Условие : Приводится распределение 30 работников фирмы по размеру месячной заработной платы

Задача : Изобразить интервальный вариационный ряд графически в виде гистограммы и кумуляты.
Решение :

  1. Неизвестная граница открытого (первого) интервала определяется по величине второго интервала: 7000 — 5000 = 2000 руб. С той же величиной находим нижнюю границу первого интервала: 5000 — 2000 = 3000 руб.
  2. Для построения гистограммы в прямоугольной системе координат по оси абсцисс откладываем отрезки, величины которых соответствуют интервалам варицонного ряда.
    Эти отрезки служат нижним основанием, а соответствующая частота (частость) — высотой образуемых прямоугольников.
  3. Построим гистограмму:

Для построения кумуляты необходимо рассчитать накопленные частоты (частости). Они определяются путем последовательного суммирования частот (частостей) предшествующих интервалов и обозначаются S. Накопленные частоты показывают, сколько единиц совокупности имеют значение признака не больше, чем рассматриваемое.

Кумулята

Распределение признака в вариационном ряду по накопленным частотам (частостям) изображается с помощью кумуляты.

Кумулята или кумулятивная кривая в отличие от полигона строится по накопленным частотам или частостям. При этом на оси абсцисс помещают значения признака, а на оси ординат — накопленные частоты или частости (рис. 6.3).

Рис. 6.3. Кумулята распределения домохозяйств по размеру

4. Рассчитаем накопленные частоты:
Наколенная частота первого интервала рассчитывается следующим образом: 0 + 4 = 4, для второго: 4 + 12 = 16; для третьего: 4 + 12 + 8 = 24 и т.д.

При построении кумуляты накопленная частота (частость) соответствующего интервала присваивается его верхней границе:

Огива

Огива строится аналогично кумуляте с той лишь разницей, что накопленные частоты помещают на оси абсцисс, а значения признака — на оси ординат.

Разновидностью кумуляты является кривая концентрации или график Лоренца. Для построения кривой концентрации на обе оси прямоугольной системы координат наносится масштабная шкала в процентах от 0 до 100. При этом на оси абсцисс указывают накопленные частости, а на оси ординат — накопленные значения доли (в процентах) по объему признака.

Равномерному распределению признака соответствует на графике диагональ квадрата (рис. 6.4). При неравномерном распределении график представляет собой вогнутую кривую в зависимости от уровня концентрации признака.

6.4. Кривая концентрации

Пример решения контрольной работы по математической статистике

Задача 1

Исходные данные : студенты некоторой группы, состоящей из 30 человек сдали экзамен по курсу «Информатика». Полученные студентами оценки образуют следующий ряд чисел:

I. Составим вариационный ряд

m x

w x

m x нак

w x нак

Итого:

II. Графическое представление статистических сведений.

III. Числовые характеристики выборки.

1. Среднее арифметическое

2. Среднее геометрическое

3. Мода

4. Медиана

222222333333333 | 3 34444444445555

5. Выборочная дисперсия

7. Коэффициент вариации

8. Ассиметрия

9. Коэффициент ассиметрии

10. Эксцесс

11. Коэффициент эксцесса

Задача 2

Исходные данные : студенты некоторой группы написали выпускную контрольную работу. Группа состоит из 30 человек. Набранные студентами баллы образуют следующий ряд чисел

Решение

I. Так как признак принимает много различных значений, то для него построим интервальный вариационный ряд. Для этого сначала зададим величину интервала h . Воспользуемся формулой Стэрджера

Составим шкалу интервалов. При этом за верхнюю границу первого интервала примем величину, определяемую по формуле:

Верхние границы последующих интервалов определим по следующей рекуррентной формуле:

, тогда

Построение шкалы интервалов заканчиваем, так как верхняя граница очередного интервала стала больше или равна максимальному значению выборки
.

II. Графическое отображение интервального вариационного ряда

III. Числовые характеристики выборки

Для определения числовых характеристик выборки составим вспомогательную таблицу

Сумма :

1. Среднее арифметическое

2. Среднее геометрическое

3. Мода

4. Медиана

10 11 12 12 13 13 13 13 14 14 14 14 15 15 15 |15 15 15 16 16 16 16 16 17 17 18 19 19 20 20

5. Выборочная дисперсия

6. Выборочное стандартное отклонение

7. Коэффициент вариации

8. Ассиметрия

9. Коэффициент ассиметрии

10. Эксцесс

11. Коэффициент эксцесса

Задача 3

Условие : цена деления шкалы амперметра равна 0,1 А. Показания округляют до ближайшего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка, превышающая 0,02 А.

Решение.

Ошибку округления отсчета можно рассматривать как случайную величину Х , которая распределена равномерно в интервале между двумя соседними целыми делениями. Плотность равномерного распределения

где
- длина интервала, в котором заключены возможные значения Х ; вне этого интервала
В данной задаче длина интервала, в котором заключены возможные значения Х , равна 0,1, поэтому

Ошибка отсчета превысит 0,02 если она будет заключена в интервале (0,02; 0,08). Тогда

Ответ: р =0,6

Задача 4

Исходные данные: математическое ожидание и стандартное отклонение нормально распределенного признака Х соответственно равны 10 и 2. Найти вероятность того, чтов результате испытания Х примет значение, заключенное в интервале (12, 14).

Решение.

Воспользуемся формулой

И теоретическими частотами

Решение

Для Х ее математическое ожидание M(X) и дисперсию D(X). Решение . Найдем функцию распределения F(x) случайной величины... ошибка выборки). Составим вариационный ряд Ширина интервала составит : Для каждого значения ряда подсчитаем, какое количество...

  • Решение: уравнение с разделяющимися переменными

    Решение

    В виде Для нахождения частного решения неоднородного уравнения составим систему Решим полученную систему... ; +47; +61; +10; -8. Построить интервальный вариационный ряд . Дать статистические оценки среднего значения...

  • Решение: Проведем расчет цепных и базисных абсолютных приростов, темпов роста, темпов прироста. Полученные значения сведем в таблицу 1

    Решение

    Объем производства продукции. Решение : Средняя арифметическая интервального вариационного ряда вычисляется следующим образом: за... Предельная ошибка выборки с вероятностью 0,954 (t=2) составит : Δ w = t*μ = 2*0,0146 = 0,02927 Определим границы...

  • Решение. Признак

    Решение

    О трудовом стаже которых и составили выборку. Средний по выборке стаж... рабочего дня этих сотрудников и составили выборку. Средняя по выборке продолжительность... 1,16, уровень значимости α = 0,05. Решение . Вариационный ряд данной выборки имеет вид: 0,71 ...

  • Рабочая учебная программа по биологии для 10-11 классов Составитель: Поликарпова С. В

    Рабочая учебная программа

    Простейших схем скрещивания» 5 Л.р. «Решение элементарных генетических задач» 6 Л.р. «Решение элементарных генетических задач» 7 Л.р. « ... , 110, 115, 112, 110. Составьте вариационный ряд , начертите вариационную кривую, найдите среднюю величину признака...

  • Группировка – это разбиение совокупности на группы, однородные по какому-либо признаку.

    Назначение сервиса . С помощью онлайн-калькулятора Вы сможете:

    • построить вариационный ряд , построить гистограмму и полигон;
    • найти показатели вариации (среднюю, моду (в т.ч. и графическим способом), медиану, размах вариации, квартили, децили, квартильный коэффициент дифференциации, коэффициент вариации и другие показатели);

    Инструкция . Для группировки ряда необходимо выбрать вид получаемого вариационного ряда (дискретный или интервальный) и указать количество данных (количество строк). Полученное решение сохраняется в файле Word (см. пример группировки статистических данных).

    Количество исходных данных
    ",0);">

    Если группировка уже осуществлена и заданы дискретный вариационный ряд или интервальный ряд , то необходимо воспользоваться онлайн-калькулятором Показатели вариации . Проверка гипотезы о виде распределения производится с помощью сервиса Изучение формы распределения .

    Виды статистических группировок

    Вариационный ряд . В случае наблюдений дискретной случайной величины одно и то же значение можно встретить несколько раз. Такие значения x i случайной величины записывают с указанием n i числа раз его появления в n наблюдениях, это и есть частота данного значения.
    В случае непрерывной случайной величины на практике применяют группировку.
    1. Типологическая группировка – это разделение исследуемой качественно разнородной совокупности на классы, социально–экономические типы, однородные группы единиц. Для построения данной группировки используйте параметр Дискретный вариационный ряд.
    2. Структурной называется группировка , в которой происходит разделение однородной совокупности на группы, характеризующие ее структуру по какому–либо варьирующему признаку. Для построения данной группировки используйте параметр Интервальный ряд.
    3. Группировка, выявляющая взаимосвязи между изучаемыми явлениями и их признаками, называется аналитической группировкой (см. аналитическая группировка ряда).

    Принципы построения статистических группировок

    Ряд наблюдений, упорядоченных по возрастанию, называется вариационным рядом . Группировочным признаком называется признак, по которому производится разбивка совокупности на отдельные группы. Его называют основанием группировки. В основание группировки могут быть положены как количественные, так и качественные признаки.
    После определения основания группировки следует решить вопрос о количестве групп, на которые надо разбить исследуемую совокупность.

    При использовании персональных компьютеров для обработки статистических данных группировка единиц объекта производится с помощью стандартных процедур.
    Одна из таких процедур основана на использовании формулы Стерджесса для определения оптимального числа групп:

    k = 1+3,322*lg(N)

    Где k – число групп, N – число единиц совокупности.

    Длину частичных интервалов вычисляют как h=(x max -x min)/k

    Затем подсчитывают числа попаданий наблюдений в эти интервалы, которые принимают за частоты n i . Малочисленные частоты, значения которых меньше 5 (n i < 5), следует объединить. в этом случае надо объединить и соответствующие интервалы.
    В качестве новых значений вариант берут середины интервалов x i =(c i-1 +c i)/2.

    Дискретный вариационный ряд строится для дискретный признаков.

    Для того, чтобы построить дискретный вариационный ряд нужно выполнить следующие действия: 1) упорядочить единицы наблюдения по возрастанию изучаемого значения признака,

    2) определить все возможные значения признака x i , упорядочить их по возрастанию,

    значением признака, i .

    частота значения признака и обозначают f i . Сумма всех частот ряда равна количеству элементов в изучаемой совокупности.

    Пример 1 .

    Список оценок полученных студентами на экзаменах: 3; 4; 3; 5; 4; 2; 2; 4; 4; 3; 5; 2; 4; 5; 4; 3; 4; 3; 3; 4; 4; 2; 2; 5; 5; 4; 5; 2; 3; 4; 4; 3; 4; 5; 2; 5; 5; 4; 3; 3; 4; 2; 4; 4; 5; 4; 3; 5; 3; 5; 4; 4; 5; 4; 4; 5; 4; 5; 5; 5.

    Здесь число Х – оценка является дискретной случайной величиной, а полученный список оценок - статистические (наблюдаемые) данные .

      упорядочить единицы наблюдения по возрастанию изучаемого значения признака:

    2; 2; 2; 2; 2; 2; 2; 2; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5.

    2) определить все возможные значения признака x i , упорядочить их по возрастанию:

    В данном примере все оценки можно разделить на четыре группы со следующими значениями: 2; 3; 4; 5.

    Значение случайной величины, соответствующее отдельной группе наблюдаемых данных, называют значением признака, вариантом (вариантой) и обознпчают x i .

    Число, которое показывает, сколько раз встречается соответствующее значение признака в ряде наблюдений называют частота значения признака и обозначают f i .

    Для нашего примера

    оценка 2 встречается - 8 раз,

    оценка 3 встречается - 12 раз,

    оценка 4 встречается - 23 раза,

    оценка 5 встречается - 17 раз.

    Всего 60 оценок.

    4) записать полученные данные в таблицу из двух строк (столбцов) - x i и f i .

    На основании этих данных можно построить дискретный вариационный ряд

    Дискретный вариационный ряд – это таблица, в которой указаны встречающиеся значения изучаемого признака как отдельные значения по возрастанию и их частоты

    1. Построение интервального вариационного ряда

    Кроме дискретного вариационного ряда часто встречается такой способ группировки данных, как интервальный вариационный ряд.

    Интервальный ряд строится если:

      признак имеет непрерывный характер изменения;

      дискретных значений получилось очень много (больше 10)

      частоты дискретных значений очень малы (не превышают 1-3 при относительно большем количестве единиц наблюдения);

      много дискретных значений признака с одинаковыми частотами.

    Интервальный вариационный ряд – это способ группировки данных в виде таблицы, которая имеет две графы (значения признака в виде интервала значений и частота каждого интервала).

    В отличие от дискретного ряда значения признака интервального ряда представлены не отдельными значениями, а интервалом значений («от - до»).

    Число, которое показывает, сколько единиц наблюдения попало в каждый выделенный интервал, называется частота значения признака и обозначают f i . Сумма всех частот ряда равна количеству элементов (единиц наблюдения) в изучаемой совокупности.

    Если единица обладает значением признака, равным величине верхней границы интервала, то ее следует относить к следующему интервалу.

    Например, ребёнок с ростом 100 см попадёт во 2-ой интервал, а не в первый; а ребёнок с ростом 130 см попадёт в последний интервал, а не в третий.

    На основании этих данных можно построить интервальный вариационный ряд.

    У каждого интервала есть нижняя граница (х н), верхняя граница (х в) и ширина интервала (i ).

    Граница интервала – это значение признака, которое лежит на границе двух интервалов.

    рост детей (см)

    рост детей (см)

    количество детей

    больше 130

    Если у интервала есть верхняя и нижняя граница, то он называется закрытый интервал . Если у интервала есть только нижняя или только верхняя граница, то это – открытый интервал. Открытым может быть только самый первый или самый последний интервал. В приведённом примере последний интервал – открытый.

    Ширина интервала (i ) – разница между верхней и нижней границей.

    i = х н - х в

    Ширина открытого интервала принимается такой же, как ширина соседнего закрытого интервала.

    рост детей (см)

    количество детей

    Ширина интервала (i)

    для расчётов 130+20=150

    20 (потому что ширина соседнего закрытого интервала – 20)

    Все интервальные ряды делятся на интервальные ряды с равными интервалами и интервальные ряды с неравными интервалами. В интервальных рядах с равными интервалами ширина всех интервалов одинаковая. В интервальных рядах с неравными интервалами ширина интервалов разная.

    В рассматриваемом примере - интервальный ряд с неравными интервалами.

    При обработке больших массивов информации, что особенно актуально при проведении современных научных разработок, перед исследователем стоит серьезная задача правильной группировки исходных данных. Если данные имеют дискретный характер, то проблем, как мы видели, не возникает – необходимо просто подсчитать частотукаждого признака. Если же исследуемый признак имеет непрерывный характер (что имеет большее распространение на практике), то выбор оптимального числа интервалов группировки признака является отнюдь не тривиальной задачей.

    Для группировки непрерывных случайных величин весь вариационный размах признакаразбивают на некоторое количество интервалов к.

    Сгруппированным интервальным (непрерывным ) вариационным рядом называют ранжированные по значению признака интервалы (), гдеуказанные вместе с соответствующими частотами () числа наблюдений, попавших в г"-й интервал, или относительными частотами ():

    Интервалы значений признака

    Частота mi

    Гистограмма и кумулята {огива), уже подробно рассмотренные нами, являются прекрасным средством визуализации данных, позволяющим получить первичное представление о структуре данных. Такие графики (рис. 1.15) строятся для непрерывных данных так же, как и для дискретных, только с учетом того, что непрерывные данные сплошь заполняют область своих возможных значений, принимая любые значения.

    Рис. 1.15.

    Поэтому столбцы на гистограмме и кумуляте должны соприкасаться, не иметь участков, куда не попадают значения признака в пределах всех возможных (т.е. гистограмма и кумулята не должны иметь "дырок" по оси абсцисс, в которые не попадают значения изучаемой переменной, как на рис. 1.16). Высота столбика соответствует частоте– числу наблюдений, попавших в данный интервал, или относительной частоте– доле наблюдений. Интервалы не должны пересекаться и имеют, как правило, одинаковую ширину.

    Рис. 1.16.

    Гистограмма и полигон являются аппроксимациями кривой плотности вероятности (дифференциальной функции) f(x) теоретического распределения, рассматриваемой в курсе теории вероятностей . Поэтому их построение имеет такое важное значение при первичной статистической обработке количественных непрерывных данных – по их виду можно судить о гипотетическом законе распределения.

    Кумулята – кривая накопленных частот (частостей) интервального вариационного ряда. С кумулятой сопоставляется график интегральной функции распределения F(x) , также рассматриваемой в курсе теории вероятностей.

    В основном понятия гистограммы и кумуляты связывают именно с непрерывными данными и их интервальными вариационными рядами, так как их графики являются эмпирическими оценками функции плотности вероятности и функции распределения соответственно.

    Построение интервального вариационного ряда начинают с определения числа интервалов k. И эта задача, пожалуй, является самой сложной, важной и неоднозначной в изучаемом вопросе.

    Число интервалов не должно быть слишком малым, так как при этом гистограмма получается слишком сглаженной (oversmoothed), теряет все особенности изменчивости исходных данных – на рис. 1.17 можно увидеть, как те же данные, по которым построены графики рис. 1.15, использованы для построения гистограммы с меньшим числом интервалов (левый график).

    В то же время число интервалов не должно быть слишком велико – иначе мы не сможем оценить плотность распределения изучаемых данных по числовой оси: гистограмма получится недосглажепная (undersmoothed), с незаполненными интервалами, неравномерная (см. рис. 1.17, правый график).

    Рис. 1.17.

    Как же определить наиболее предпочтительное число интервалов?

    Еще в 1926 г. Герберт Стерджес (Herbert Sturges) предложил формулу для вычисления количества интервалов, на которые необходимо разбить исходное множество значений изучаемого признака . Эта формула поистине стала сверхпопулярной – большинство статистических учебников предлагают именно ее, по умолчанию ее используют и множество статистических пакетов. Насколько это оправдано и во всех ли случаях – является весьма серьезным вопросом.

    Итак, на чем основана формула Стерджеса?

    Рассмотрим биномиальное распределение }