Определение динамического давления в воздуховоде. Расчет воздуховодов Расчет потерь давления на трение в воздуховодах

Расчёт вентиляции это расчёт воздуховодов и вентиляционных каналов в системах приточной и вытяжной вентиляции . Вентиляция служит для подачи и удаления воздуха с температурой до 80°С. Расчёт производится по методу удельных потерь давления. Общие потери давления, кгс/м², в сети воздуховодов для стандартного воздуха (t = 20°C и γ = 1,2 кг/м³) определяются по формуле:

p =∑(Rl+Z),

где R- потери давления на трение на расчётном отрезке кгс/м² на 1 м; l- длинна отрезка воздуховода, м; Z- потери давления на местные сопротивления на расчётном отрезке, кгс/м².

Потери давления на трение R, кгс/м² на 1 м в круглых воздуховодах определяются по формуле R= λd v²γ2g , где λ- коэффициент сопротивления трения; d – диаметр воздуховода, м; v – скорость движения воздуха в воздуховоде, м/с; γ - объемная масса воздуха, перемещаемая по воздуховоду, кгс/м³; v²γ/2g- скоростное (динамическое) давление, кгс/м².

Коэффициент сопротивления принят по формуле Альтшуля:

где Δэ- абсолютная эквивалентная шероховатость поверхности воздуховода из листовой стали, равная 0,1 мм; d – диаметр воздуховода, мм; Re- число Рейнольдса.

Для воздуховодов изготовленных из других материалов с абсолютной эквивалентной шероховатостью Кэ≥0,1 мм значения R принимаются с поправочным коэффициентом n на потери давления на трение.

Значение Δэ для других материалов:

  1. Листовая сталь - 0,1мм
  2. Винипласт – 0,1мм
  3. Асбестоцементные трубы – 0,11мм
  4. Кирпич – 4мм
  5. Штукатурка по сетке – 10мм

м/с

n при Δэ, мм

Рекомендуемая скорость движения воздуха в воздуховодах при механическом побуждении. Производственные здания магистральные воздуховоды – до 12 м/с, воздуховоды ответвления – 6 м/с. Общественные здания магистральные воздуховоды – до 8 м/с, воздуховоды ответвления – 5 м/с.

В воздуховодах прямоугольного сечения за расчётную величину d принимается эквивалентный диаметр dэv, при котором потери давления в круглом воздуховоде при той же скорости воздуха равны потерям в прямоугольном воздуховоде. Значения эквивалентных диаметров, м, определены по формуле

где А и В – размеры сторон прямоугольного воздуховода. Стоит учитывать, что при равной скорости воздуха прямоугольный воздуховод и аналогичный круглый имеют разные расходы воздуха. Значение скоростного (динамического) давления и удельные потери давления на трение для круглых воздуховодов.

v2γ2g
кгс/м²

м/с

Количество проходящего воздуха м³/ч

Потери давления на трение кгс/м²

Потери давления Z, кгс/м², на местные сопротивления определяют по формуле

Z = ∑ζ(v²γ/2g),

где ∑ζ- сумма коэффициентов местных сопротивлений на расчётном отрезке воздуховода. Если температура перемещаемого воздуха не равна 20°C на потери давления, посчитанные по формуле p =∑(Rl+Z), требуется вводить поправочные коэффициенты K1 – трение, K2 – местные сопротивления.

t °C

t °C

t °C

t °C

Если неувязки потерь давления по ответвлениям воздуховодов в пределах 10% следует устанавливать ирисовые клапаны.

где R - потери давления на трение в расчете на 1 погонный метр воздуховода, l - длина воздуховода в метрах, z - потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

Pтр = (x*l/d) * (v*v*y)/2g,

z = Q* (v*v*y)/2g,

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.


Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

В диаграмме потерь напора указаны диаметры круглых воздуховодов . Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды . Как правило, ширина воздуховода в 2 раза больше высоты).

Этим материалом редакция журнала „Мир Климата“ продолжает публикацию глав из книги „Системы вентиляции и кондиционирования. Рекомендации по проектированию для произ-
водственных и общественных зданий“. Автор Краснов Ю.С.

Аэродинамический расчет воздуховодов начинают с вычерчивания аксонометрической схемы (М 1: 100), проставления номеров участков, их нагрузок L (м 3 /ч) и длин I (м). Определяют направление аэродинамического расчета - от наиболее удаленного и нагруженного участка до вентилятора. При сомнениях при определении направления рассчитывают все возможные варианты.

Расчет начинают с удаленного участка: определяют диаметр D (м) круглого или площадь F (м 2) поперечного сечения прямоугольного воздуховода:

Скорость растет по мере приближения к вентилятору.

По приложению Н из принимают ближайшие стандартные значения: D CT или (а х b) ст (м).

Гидравлический радиус прямоугольных воздуховодов (м):

где - сумма коэффициентов местных сопротивлений на участке воздуховодов.

Местные сопротивления на границе двух участков (тройники, крестовины) относят к участку с меньшим расходом.

Коэффициенты местных сопротивлений даны в приложениях.

Схема приточной системы вентиляции, обслуживающей 3-этажное административное здание

Пример расчета

Исходные данные:

№ участков подача L, м 3 /ч длина L, м υ рек, м/с сечение
а × b, м
υ ф, м/с D l ,м Re λ Kmc потери на участке Δр, па
решетка рр на выходе 0,2 × 0,4 3,1 - - - 1,8 10,4
1 720 4,2 4 0,2 × 0,25 4,0 0,222 56900 0,0205 0,48 8,4
2 1030 3,0 5 0,25× 0,25 4,6 0,25 73700 0,0195 0,4 8,1
3 2130 2,7 6 0,4 × 0,25 5,92 0,308 116900 0,0180 0,48 13,4
4 3480 14,8 7 0,4 × 0,4 6,04 0,40 154900 0,0172 1,44 45,5
5 6830 1,2 8 0,5 × 0,5 7,6 0,50 234000 0,0159 0,2 8,3
6 10420 6,4 10 0,6 × 0,5 9,65 0,545 337000 0,0151 0,64 45,7
10420 0,8 ю. Ø0,64 8,99 0,64 369000 0,0149 0 0,9
7 10420 3,2 5 0,53 × 1,06 5,15 0,707 234000 0,0312 ×n 2,5 44,2
Суммарные потери: 185
Таблица 1. Аэродинамический расчет

Воздуховоды изготовлены из оцинкованной тонколистовой стали, толщина и размер которой соответствуют прил. Н из. Материал воздухозаборной шахты - кирпич. В качестве воздухораспределителей применены решетки регулируемые типа РР с возможными сечениями: 100 х 200; 200 х 200; 400 х 200 и 600 х 200 мм, коэффициентом затенения 0,8 и максимальной скоростью воздуха на выходе до 3 м/с.

Сопротивление приемного утепленного клапана с полностью открытыми лопастями 10 Па. Гидравлическое сопротивление калориферной установки 100 Па (по отдельному расчету). Сопротивление фильтра G-4 250 Па. Гидравлическое сопротивление глушителя 36 Па (по акустическому расчету). Исходя из архитектурных требований проектируют воздуховоды прямоугольного сечения.

Сечения кирпичных каналов принимают по табл. 22.7 .

Коэффициенты местных сопротивлений

Участок 1. Решетка РР на выходе сечением 200×400 мм (рассчитывают отдельно):

№ участков Вид местного сопротивления Эскиз Угол α, град. Отношение Обоснование КМС
F 0 /F 1 L 0 /L ст f прох /f ств
1 Диффузор 20 0,62 - - Табл. 25.1 0,09
Отвод 90 - - - Табл. 25.11 0,19
Тройник-проход - - 0,3 0,8 Прил. 25.8 0,2
∑ = 0,48
2 Тройник-проход - - 0,48 0,63 Прил. 25.8 0,4
3 Тройник-ответвление - 0,63 0,61 - Прил. 25.9 0,48
4 2 отвода 250 × 400 90 - - - Прил. 25.11
Отвод 400 × 250 90 - - - Прил. 25.11 0,22
Тройник-проход - - 0,49 0,64 Табл. 25.8 0,4
∑ = 1,44
5 Тройник-проход - - 0,34 0,83 Прил. 25.8 0,2
6 Диффузор после вентилятора h=0,6 1,53 - - Прил. 25.13 0,14
Отвод 600 × 500 90 - - - Прил. 25.11 0,5
∑= 0,64
Конфузор перед вентилятором D г =0,42 м Табл. 25.12 0
7 Колено 90 - - - Табл. 25.1 1,2
Решетка жалюзийная Табл. 25.1 1,3
∑ = 1,44
Таблица 2. Определение местных сопротивлений

Краснов Ю.С.,

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

где R - потери давления на трение в расчете на 1 погонный метр воздуховода, l - длина воздуховода в метрах, z - потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x - коэффициент сопротивления трения, l - длина воздуховода в метрах, d - диаметр воздуховода в метрах, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q - сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  • Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  • Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  • Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  • Вычисляем потери давления на трение P тр.
  • По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  • Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

  • В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  • По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  • Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  • Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;
  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной - его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Таблица эквивалентных диаметров воздуховодов

Распределение давлений в системе вентиляции необходимо знать при наладке и регулировании системы, при определении расходов на отдельных участках системы и при решении многих других вентиляци­онных задач.

Распределение давлений в системах вентиляции с механическим побуждением движения воздуха. Рассмотрим воздуховод с вентилято­ром (рис. XI.3). В сечении 1-/ статическое давление равно нулю (т. е. равно давлению воздуха на уровне расположения воздуховода). Полное давление в этом сечении равно динамическому давлению рді, определяемому по формуле (XI.1). В сечении II-II статическое давле­ние рстіі>0 (численно равно потерям давления на трение между сече­ниями II-II и I-/). При постоянном сечении воздуховода линия ста­тического давления - прямая. Линия полного давления также прямая,

Параллельная линии рст. Расстояние между этими линиями по вертика­ли определяет динамическое давление рДі.

В диффузоре, расположенном между сечениями II-II и III-III, происходит изменение скорости потока. Динамическое давление по ходу воздуха уменьшается. В связи с этим статическое давление изменяется и может даже возрасти, как это показано на рисунке (рстіі>рстііі).

Полное давление в сечении III-III, создаваемое вентилятором, те­ряется на трение Дртр и в местных сопротивлениях (диффузоре Лрдиф, при выходе Арных). Общие потери давления со стороны нагнета­ния равны:

Статическое давление вне воздуховода со стороны всасывания рав­но нулю. В непосредственной близости от отверстия в пределах всасы­вающего факела поток воздуха уже обладает кинетической энергией. Разрежение в пределах всасывающего факела незначительно.

На входе в воздуховод скорость потока увеличивается, а значит увеличивается и кинетическая энергия потока. Следовательно, по зако­ну сохранения энергии потенциальная энергия потока должна умень­шиться. С учетом потерь давления Л/?ПОт в любом сечении со стороны всасывания

Per = 0 - рд - Дрпот - (XI. 24)

Во всасывающем воздуховоде так же, как и со стороны нагнетания, полное давление равно разности давления в начале воздуховода и по­терь давления до рассматриваемого сечения:

Рп = 0-ДрпОт. (XI.25)

Из формул (XI.24) и (XI.25) следует, что в каждом сечении воз­духовода со стороны всасывания величины р0т и рп меньше нуля. По абсолютному значению статическое давление больше полного давле­ния, однако формула (XI.2) справедлива и для этого случая.

Линия статического давления идет ниже линии полного давления. Резкое понижение линии статического давления после сечения VI-VI объясняется сужением потока на входе в воздуховод вследствие обра­зования вихревой зоны. Между сечениями V-V и IV-IV на схеме по­казан конфузор с поворотом. Снижение линии статического давления между этими сечениями происходит вследствие увеличения как скоро­сти потока в конфузоре, так и потерь давления. Эпюры статического давления на рис. XI.3 заштрихованы.

В точке Б наблюдается наименьшее в системе воздуховодов значе­ние полного давления. Численно оно равно потерям давления со сто­роны всасывания:

А - полного и статического в нагнетательном воздуховоде; б - то же, во всасывающем воздухово­де; в - динамического в нагнетательном воздуховоде; г - динамического во всасывающем воздухо­воде

Вентилятор создает перепад давления, равный разности макси­мального и минимального значения полного давления (рлл - Рпб)> увеличивая энергию 1 м3 воздуха, проходящего через него, на величину

Давление, создаваемое вентилятором, затрачивается на преодоле­ние сопротивления движению воздуха по воздуховодам:

Рвеит = ДРвс + Дрнагн. (XI. 27)

Профессор П. Н. Каменев предложил строить эпюры давлений на всасывающем воздуховоде от абсолютного нуля дав"лений (абсолютного вакуума). При этом построение линий рст. абс и рп. абс полностью соот­ветствует случаю нагнетания.

Давления в воздуховодах измеряют микроманометром. Для изме­рения статического давления шланг от микроманометра присоединяют к штуцеру, прикрепленному к стенке воздуховода, а для измерения пол­ного давления - к пневмометрической трубке Пито, отверстие которой направлено навстречу потоку (рис. XI.4, а, б).

Разность полного и статического давлений равна значению динами­ческого давления. Эту разность можно замерить непосредственно ми­кроманометром, как это показано на рис. XI.4, в, г. По значению рд определяют скорость, м/с:

V = V2prfp, (XI. 28)

По которой вычисляют расход воздуха в воздуховоде, м3/ч:

L = ЗбООу/. (XI. 29)

Распределение давлений в системах вентиляции с естественным по­буждением движения воздуха. Особенностями таких систем являются вертикальное расположение их каналов в здании, малые значения рас­полагаемых давлений и, следовательно, небольшие скорости. Работа систем с естественным побуждением движения воздуха зависит от кон­структивных особенностей системы и здания, разности плотности на­ружного и внутреннего воздуха, скорости и направления ветра. Однако при выборе конструктивных размеров отдельных элементов системы вентиляции (сечений каналов и шахт, площадей жалюзийных решеток) достаточно провести расчет для случая, когда здание не оказывает влияния на работу .

А - эпюры абсолютных аэростатичес­ких давлений в канале, закрытом за­глушками 1 - внутри канала; 2 - сна­ружи канала; б - эпюра избыточных давлений в том же канале; в - эпюры избыточных давлений прн движении воздуха по каналу; г - эпюры избыточ­ных давлений в шахте и в присоединен­ном к ней «широком канале»; д-эпюры избыточных давлений в канале и шах­те при наличии ответвления; е - эпюры избыточных давлений при естествен­ном побуждении движения воздуха в системе вентиляции многоэтажного здания; ж - эпюры избыточных давле­ний при механическом побуждении дви­жения воздуха; (рст> Рп~ линии соот­ветственно статического н полного давления внутри канала и шахты; Рн - линия статического давления сна­ружи канала н шахты)

Рассмотрим простейший случай, когда вертикальный канал высо­той Як, заполненный теплым воздухом с температурой tB, закрыт свер­ху и снизу заглушками. Канал окружен наружным воздухом с темпе­ратурой ta.

Предположим, что давление внутри и снаружи канала на уровне его верха равно ра (для обеспечения этого условия достаточно оставить в верхней заглушке небольшое отверстие). Тогда в соответствии с зако­ном Паскаля абсолютное давление на любом уровне (на расстоянии h от верха канала) равно: снаружи рст н=ра4-^рн£, а внутри рстк=ра4- --hpBg. Распределение абсолютных давлений внутри канала (линия 1) и снаружи него (линия 2) показано на рис. XI.5, а.

В системе «канал - окружающий воздух» можно пользоваться ус­ловными значениями избыточных давлений, т. е. условно принять аэро­статическое давление внутри канала на любом уровне за нуль. Эпюра этих давлений снаружи канала имеет форму треугольника (рис. XI.5,6J. Основанием треугольника

Дрк = Нк Дрg

Является располагаемое давление, Па, определяющее движение воздуха по каналу.

При движении воздуха по каналу (рис. XI.5, в) потери давления складываются из потерь на входе, на трение и на выходе. На рис. XI.5, в показано распределение полного и статического давлений (в избыточных относительно условного нуля давлениях). Динамическое давление рд равно разности рп и рст. Статическое давление (эпюра его на рисунке заштрихована) по всей длине канала меньше избыточного аэростати­ческого давления снаружи канала рн. В некоторых случаях в канале могут наблюдаться ЗОНЫ С Рст >рн. Например, в канале перед сужением (рис. XI.5, г) при определенных условиях статическое давление может превышать давление рн. Через неплотности в этой зоне канала будет происходить утечка загрязненного воздуха.

Если вертикальный вентиляционный канал объединяет два (рис. XI, 5,(3) или более (рис. XI.5, е) ответвлений, то рекомендуется присоединять их не на уровне входа воздуха в ответвление, а несколько выше (на один, два этажа и более). Эта рекомендация дана с учетом накопленного опыта эксплуатации. При присоединении ответвления на уровне точки А вместо уровня точки Б увеличивается располагаемое давление Дротв (см. рис. XI.5, д); следовательно, увеличивается также сопротивление канала и устойчивость работы системы.

На рис. XI.5, д, е эпюры статического давления заштрихованы. Пол­ное давление убывает по высоте до значения потерь на выходе, а дина­мическое давление при постоянном сечении канала увеличивается по вы­соте, так как после присоединения ответвления расход в канале увели­чивается.

В последнее время внедряются системы вентиляции с вертикальны­ми каналами и механическим побуждением движения воздуха. В этих системах воздух движется под действием вентилятора и гравитацион­ных сил. Построение распределения давлений в таких системах анало­гично рассмотренному выше. Особенность заключается в том, что ста­тическое давление перед вентилятором определяется разрежением, создаваемым вентилятором (см. схему на рис. XI.5,ж). В этом случае располагаемое давление для движения воздуха в системе

Назначение

Основное требование
Бесшумность Мин. потери напора
Магистральные каналы Главные каналы Ответвления
Приток Вытяжка Приток Вытяжка
Жилые помещения 3 5 4 3 3
Гостиницы 5 7.5 6.5 6 5
Учреждения 6 8 6.5 6 5
Рестораны 7 9 7 7 6
Магазины 8 9 7 7 6

Исходя из этих значений следует рассчитывать линейные параметры воздуховодов.

Алгоритм расчета потерь напора воздуха

Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.

Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.

Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных

150 200 250 300 350 400 450 500
250 210 245 275
300 230 265 300 330
350 245 285 325 355 380
400 260 305 345 370 410 440
450 275 320 365 400 435 465 490
500 290 340 380 425 455 490 520 545
550 300 350 400 440 475 515 545 575
600 310 365 415 460 495 535 565 600
650 320 380 430 475 515 555 590 625
700 390 445 490 535 575 610 645
750 400 455 505 550 590 630 665
800 415 470 520 565 610 650 685
850 480 535 580 625 670 710
900 495 550 600 645 685 725
950 505 560 615 660 705 745
1000 520 575 625 675 720 760
1200 620 680 730 780 830
1400 725 780 835 880
1600 830 885 940
1800 870 935 990

По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.

Потери давления воздуха в изгибах берутся из таблицы № 3.

Табл. № 3. Потери давления на изгибах

Для определения потерь давления в диффузорах используются данные из таблицы № 4.

Табл. № 4. Потери давления в диффузорах

В таблице № 5 дается общая диаграмма потерь на прямолинейном участке.

Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах

Все отдельные потери на данном участке воздуховода суммируются и корректируются с таблицей № 6. Табл. № 6. Расчет понижения давления потока в системах вентиляции


Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений.