Логарифмические неравенства. Как решать логарифмические неравенства

Вам кажется, что до ЕГЭ еще есть время, и вы успеете подготовиться? Быть может, это и так. Но в любом случае, чем раньше школьник начинает подготовку, тем успешнее он сдает экзамены. Сегодня мы решили посвятить статью логарифмическим неравенствам. Это одно из заданий, а значит, возможность получить дополнительный балл.

Вы уже знаете, что такое логарифм(log)? Мы очень надеемся, что да. Но даже если у вас нет ответа на этот вопрос, это не проблема. Понять, что такое логарифм очень просто.

Почему именно 4? В такую степень нужно возвести число 3, чтобы получилось 81. Когда вы поняли принцип, можно приступать и к более сложным вычислениям.

Неравенства вы проходили еще несколько лет назад. И с тех пор они постоянно встречаются вам в математике. Если у вас проблемы с решением неравенств, ознакомьтесь с соответствующим разделом.
Теперь, когда мы познакомились с понятиями по отдельности, перейдем к их рассмотрению в общем.

Самое простое логарифмическое неравенство.

Простейшие логарифмические неравенства не ограничиваются этим примером, есть еще три, только с другими знаками. Зачем это нужно? Чтобы полнее понять, как решать неравенство с логарифмами. Теперь приведем более применимый пример, все еще достаточно простой, сложные логарифмические неравенства оставим на потом.

Как это решить? Все начинается с ОДЗ. О нем стоит знать больше, если хочется всегда легко решать любое неравенство.

Что такое ОДЗ? ОДЗ для логарифмических неравенств

Аббревиатура расшифровывается как область допустимых значений. В заданиях для ЕГЭ нередко всплывает данная формулировка. ОДЗ пригодится вам не только в случае логарифмических неравенств.

Посмотрите еще раз на вышеприведенный пример. Мы будем рассматривать ОДЗ, исходя из него, чтобы вы поняли принцип, и решение логарифмических неравенств не вызывало вопросов. Из определения логарифма следует что, 2х+4 должно быть больше нуля. В нашем случае это означает следующее.

Это число по определению должно быть положительным. Решите неравенство, представленное выше. Это можно сделать даже устно, здесь явно, что X не может быть меньше 2. Решение неравенства и будет определением области допустимых значений.
Теперь перейдем к решению простейшего логарифмического неравенства.

Отбрасываем из обеих частей неравенства сами логарифмы. Что в результате у нас остается? Простое неравенство.

Решить его несложно. X должен быть больше -0,5. Теперь совмещаем два полученных значения в систему. Таким образом,

Это и будет область допустимых значений для рассматриваемого логарифмического неравенства.

Зачем вообще нужно ОДЗ? Это возможность отсеять неверные и невозможные ответы. Если ответ не входит в область допустимых значений, значит, ответ попросту не имеет смысла. Это стоит запомнить надолго, так как в ЕГЭ часто встречается необходимость поиска ОДЗ, и касается она не только логарифмических неравенств.

Алгоритм решения логарифмического неравенства

Решение состоит из нескольких этапов. Во-первых, необходимо найти область допустимых значений. В ОДЗ будет два значения, это мы рассмотрели выше. Далее нужно решить само неравенство. Методы решения бывают следующими:

  • метод замены множителей;
  • декомпозиции;
  • метод рационализации.

В зависимости от ситуации стоит применять один из вышеперечисленных методов. Перейдем непосредственно к решению. Раскроем наиболее популярный метод, который подходит для решения заданий ЕГЭ практически во всех случаях. Далее мы рассмотрим метод декомпозиции. Он может помочь, если попалось особенно «заковыристое» неравенство. Итак, алгоритм решения логарифмического неравенства.

Примеры решения :

Мы не зря взяли именно такое неравенство! Обратите внимание на основание. Запомните: если оно больше единицы, знак остается прежним при нахождении области допустимых значений; в противном случае нужно изменить знак неравенства.

В результате мы получаем неравенство:

Теперь приводим левую часть к виду уравнения, равному нулю. Вместо знака «меньше» ставим «равно», решаем уравнение. Таким образом, мы найдем ОДЗ. Надеемся, что с решением такого простого уравнения у вас не будет проблем. Ответы -4 и -2. Это еще не все. Нужно отобразить эти точки на графике, расставить «+» и «-». Что нужно для этого сделать? Подставить в выражение числа из интервалов. Где значения положительны, там ставим «+».

Ответ : х не может быть больше -4 и меньше -2.

Мы нашли область допустимых значений только для левой части, теперь нужно найти область допустимых значений правой части. Это не в пример легче. Ответ: -2. Пересекаем обе полученные области.

И только теперь начинаем решать само неравенство.

Упростим его, насколько возможно, чтобы решать было легче.

Снова применяем метод интервалов в решении. Опустим выкладки, с ним уже и так все понятно по предыдущему примеру. Ответ.

Но этот метод подходит, если логарифмическое неравенство имеет одинаковые основания.

Решение логарифмических уравнений и неравенств с разными основаниями предполагает изначальное приведение к одному основанию. Далее применяйте вышеописанный метод. Но есть и более сложный случай. Рассмотрим один из самых сложных видов логарифмических неравенств.

Логарифмические неравенства с переменным основанием

Как решать неравенства с такими характеристиками? Да, и такие могут встретиться в ЕГЭ. Решение неравенств нижеследующим способом тоже полезно скажется на вашем образовательном процессе. Разберемся в вопросе подробным образом. Отбросим теорию, перейдем сразу к практике. Чтобы решать логарифмические неравенства, достаточно однажды ознакомиться с примером.

Чтобы решить логарифмическое неравенство представленного вида, необходимо привести правую часть к логарифму с тем же основанием. Принцип напоминает равносильные переходы. В итоге неравенство будет выглядеть следующим образом.

Собственно, остается создать систему неравенств без логарифмов. Используя метод рационализации, переходим к равносильной системе неравенств. Вы поймете и само правило, когда подставите соответствующие значения и проследите их изменения. В системе будут следующие неравенства.

Воспользовавшись методом рационализации при решении неравенств нужно помнить следующее: из основания необходимо вычесть единицу, х по определению логарифма из обеих частей неравенства вычитается (правое из левого), два выражения перемножаются и выставляются под исходным знаком по отношению к нулю.

Дальнейшее решение осуществляется методом интервалов, здесь все просто. Вам важно понять отличия в методах решения, тогда все начнет легко получаться.

В логарифмических неравенствах много нюансов. Простейшие из них решать достаточно легко. Как сделать так, чтобы решать каждое из них без проблем? Все ответы вы уже получили в этой статье. Теперь впереди вас ждет длительная практика. Постоянно практикуйтесь в решении самых разных задач в рамках экзамена и сможете получить наивысший балл. Успехов вам в вашем непростом деле!

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

С ними находятся внутри логарифмов.

Примеры:

\(\log_3⁡x≥\log_3⁡9\)
\(\log_3⁡ {(x^2-3)}< \log_3⁡{(2x)}\)
\(\log_{x+1}⁡{(x^2+3x-7)}>2\)
\(\lg^2⁡{(x+1)}+10≤11 \lg⁡{(x+1)}\)

Как решать логарифмические неравенства:

Любое логарифмическое неравенство нужно стремиться привести к виду \(\log_a⁡{f(x)} ˅ \log_a{⁡g(x)}\) (символ \(˅\) означает любой из ). Такой вид позволяет избавиться от логарифмов и их оснований, сделав переход к неравенству выражений под логарифмами, то есть к виду \(f(x) ˅ g(x)\).

Но при выполнении этого перехода есть одна очень важная тонкость:
\(-\) если - число и оно больше 1 - знак неравенства при переходе остается прежним,
\(-\) если основание - число большее 0, но меньшее 1 (лежит между нулем и единицей), то знак неравенства должен меняться на противоположный, т.е.

Примеры:

\(\log_2⁡{(8-x)}<1\)
ОДЗ: \(8-x>0\)
\(-x>-8\)
\(x<8\)

Решение:
\(\log\)\(_2\) \((8-x)<\log\)\(_2\) \({2}\)
\(8-x\)\(<\) \(2\)
\(8-2 \(x>6\)
Ответ: \((6;8)\)

\(\log\)\(_{0,5⁡}\) \((2x-4)\)≥\(\log\)\(_{0,5}\) ⁡\({(x+1)}\)
ОДЗ: \(\begin{cases}2x-4>0\\x+1 > 0\end{cases}\)
\(\begin{cases}2x>4\\x > -1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x>2\\x > -1\end{cases}\) \(\Leftrightarrow\) \(x\in(2;\infty)\)

Решение:
\(2x-4\)\(≤\) \(x+1\)
\(2x-x≤4+1\)
\(x≤5\)
Ответ: \((2;5]\)

Очень важно! В любом неравенстве переход от вида \(\log_a{⁡f(x)} ˅ \log_a⁡{g(x)}\) к сравнению выражений под логарифмами можно делать только если:


Пример . Решить неравенство: \(\log\)\(≤-1\)

Решение:

\(\log\)\(_{\frac{1}{3}}⁡{\frac{3x-2}{2x-3}}\) \(≤-1\)

Выпишем ОДЗ.

ОДЗ: \(\frac{3x-2}{2x-3}\) \(>0\)

\(⁡\frac{3x-2-3(2x-3)}{2x-3}\) \(≥\) \(0\)

Раскрываем скобки, приводим .

\(⁡\frac{-3x+7}{2x-3}\) \(≥\) \(0\)

Умножаем неравенство на \(-1\), не забыв при этом перевернуть знак сравнения.

\(⁡\frac{3x-7}{2x-3}\) \(≤\) \(0\)

\(⁡\frac{3(x-\frac{7}{3})}{2(x-\frac{3}{2})}\) \(≤\) \(0\)

Построим числовую ось и отметим на ней точки \(\frac{7}{3}\) и \(\frac{3}{2}\) . Обратите внимание, точка из знаменателя – выколота, несмотря на то, что неравенство нестрогое. Дело в том, что эта точка не будет решением, так как при подстановке в неравенство приведет нас к делению на ноль.


\(x∈(\)\(\frac{3}{2}\) \(;\)\(\frac{7}{3}]\)

Теперь на ту же числовую ось наносим ОДЗ и записываем в ответ тот промежуток, который попадает в ОДЗ.


Записываем окончательный ответ.

Ответ: \(x∈(\)\(\frac{3}{2}\) \(;\)\(\frac{7}{3}]\)

Пример . Решить неравенство: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Решение:

\(\log^2_3⁡x-\log_3⁡x-2>0\)

Выпишем ОДЗ.

ОДЗ: \(x>0\)

Приступим к решению.

Решение: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Перед нами типичное квадратно-логарифмическое неравенство. Делаем .

\(t=\log_3⁡x\)
\(t^2-t-2>0\)

Раскладываем левую часть неравенства на .

\(D=1+8=9\)
\(t_1= \frac{1+3}{2}=2\)
\(t_2=\frac{1-3}{2}=-1\)
\((t+1)(t-2)>0\)

Теперь нужно вернуться к исходной переменной – иксу. Для этого перейдем к , имеющей такое же решение, и сделаем обратную замену.

\(\left[ \begin{gathered} t>2 \\ t<-1 \end{gathered} \right.\) \(\Leftrightarrow\) \(\left[ \begin{gathered} \log_3⁡x>2 \\ \log_3⁡x<-1 \end{gathered} \right.\)

Преобразовываем \(2=\log_3⁡9\), \(-1=\log_3⁡\frac{1}{3}\).

\(\left[ \begin{gathered} \log_3⁡x>\log_39 \\ \log_3⁡x<\log_3\frac{1}{3} \end{gathered} \right.\)

Делаем переход к сравнению аргументов. Основания у логарифмов больше \(1\), поэтому знак неравенств не меняется.

\(\left[ \begin{gathered} x>9 \\ x<\frac{1}{3} \end{gathered} \right.\)

Соединим решение неравенства и ОДЗ на одном рисунке.


Запишем ответ.

Ответ: \((0; \frac{1}{3})∪(9;∞)\)

Среди всего многообразия логарифмических неравенств отдельно изучают неравенства с переменным основанием. Они решаются по специальной формуле, которую почему-то редко рассказывают в школе:

log k (x ) f (x ) ∨ log k (x ) g (x ) ⇒ (f (x ) − g (x )) · (k (x ) − 1) ∨ 0

Вместо галки «∨» можно поставить любой знак неравенства: больше или меньше. Главное, чтобы в обоих неравенствах знаки были одинаковыми.

Так мы избавляемся от логарифмов и сводим задачу к рациональному неравенству. Последнее решается намного проще, но при отбрасывании логарифмов могут возникнуть лишние корни. Чтобы их отсечь, достаточно найти область допустимых значений. Если вы забыли ОДЗ логарифма, настоятельно рекомендую повторить - см. «Что такое логарифм ».

Все, что связано с областью допустимых значений, надо выписать и решить отдельно:

f (x ) > 0; g (x ) > 0; k (x ) > 0; k (x ) ≠ 1.

Эти четыре неравенства составляют систему и должны выполняться одновременно. Когда область допустимых значений найдена, остается пересечь ее с решением рационального неравенства - и ответ готов.

Задача. Решите неравенство:

Для начала выпишем ОДЗ логарифма:

Первые два неравенства выполняются автоматически, а последнее придется расписать. Поскольку квадрат числа равен нулю тогда и только тогда, когда само число равно нулю, имеем:

x 2 + 1 ≠ 1;
x 2 ≠ 0;
x ≠ 0.

Получается, что ОДЗ логарифма - все числа, кроме нуля: x ∈ (−∞ 0)∪(0; +∞). Теперь решаем основное неравенство:

Выполняем переход от логарифмического неравенства к рациональному. В исходном неравенстве стоит знак «меньше», значит полученное неравенство тоже должно быть со знаком «меньше». Имеем:

(10 − (x 2 + 1)) · (x 2 + 1 − 1) < 0;
(9 − x 2) · x 2 < 0;
(3 − x ) · (3 + x ) · x 2 < 0.

Нули этого выражения: x = 3; x = −3; x = 0. Причем x = 0 - корень второй кратности, значит при переходе через него знак функции не меняется. Имеем:

Получаем x ∈ (−∞ −3)∪(3; +∞). Данное множество полностью содержится в ОДЗ логарифма, значит это и есть ответ.

Преобразование логарифмических неравенств

Часто исходное неравенство отличается от приведенного выше. Это легко исправить по стандартным правилам работы с логарифмами - см. «Основные свойства логарифмов ». А именно:

  1. Любое число представимо в виде логарифма с заданным основанием;
  2. Сумму и разность логарифмов с одинаковыми основаниями можно заменить одним логарифмом.

Отдельно хочу напомнить про область допустимых значений. Поскольку в исходном неравенстве может быть несколько логарифмов, требуется найти ОДЗ каждого из них. Таким образом, общая схема решения логарифмических неравенств следующая:

  1. Найти ОДЗ каждого логарифма, входящего в неравенство;
  2. Свести неравенство к стандартному по формулам сложения и вычитания логарифмов;
  3. Решить полученное неравенство по схеме, приведенной выше.

Задача. Решите неравенство:

Найдем область определения (ОДЗ) первого логарифма:

Решаем методом интервалов. Находим нули числителя:

3x − 2 = 0;
x = 2/3.

Затем - нули знаменателя:

x − 1 = 0;
x = 1.

Отмечаем нули и знаки на координатной стреле:

Получаем x ∈ (−∞ 2/3)∪(1; +∞). У второго логарифма ОДЗ будет таким же. Не верите - можете проверить. Теперь преобразуем второй логарифм так, чтобы в основании стояла двойка:

Как видите, тройки в основании и перед логарифмом сократились. Получили два логарифма с одинаковым основанием. Складываем их:

log 2 (x − 1) 2 < 2;
log 2 (x − 1) 2 < log 2 2 2 .

Получили стандартное логарифмическое неравенство. Избавляемся от логарифмов по формуле. Поскольку в исходном неравенстве стоит знак «меньше», полученное рациональное выражение тоже должно быть меньше нуля. Имеем:

(f (x ) − g (x )) · (k (x ) − 1) < 0;
((x − 1) 2 − 2 2)(2 − 1) < 0;
x 2 − 2x + 1 − 4 < 0;
x 2 − 2x − 3 < 0;
(x − 3)(x + 1) < 0;
x ∈ (−1; 3).

Получили два множества:

  1. ОДЗ: x ∈ (−∞ 2/3)∪(1; +∞);
  2. Кандидат на ответ: x ∈ (−1; 3).

Осталось пересечь эти множества - получим настоящий ответ:

Нас интересует пересечение множеств, поэтому выбираем интервалы, закрашенные на обоих стрелах. Получаем x ∈ (−1; 2/3)∪(1; 3) - все точки выколоты.