Электрический измерительный инструмент. Измерительные инструменты - техническое черчение

Для определения действительных размеров деталей применяются различные измерительные инструменты, которые делятся на универсаль­ные, или шкальные, калибры, или бесшкальные, и точные.

К универсальным измерительным инструментам относятся: линейка, метр, штангенциркуль, глубиномер, микрометр, штихмас, угломер и др.

Для измерения отдельных элементов деталей, которые не могут быть непосредственно измерены обычными инструментами, пользуются вспомогательными инструментами: кронциркулем, нутромером, рейсма­сом и др.

Измерительные инструменты делятся также на рабочие и контроль­ные. Рабочий инструмент предназначается для пользования в цехах, контрольный - для проверки рабочего инструмента.

Кроме того, в серийных производствах применяют предельные из­мерительные инструменты.

Как бы тщательно ни были произведены измерения размеров детали, результаты измерений получаются недостаточно точными, с одной сто­роны, вследствие несовершенства измерительных инструментов, с другой,- в зависимости от способа измерения. Отклонение полученного измере­нием размера от действительного называют точностью измерения, а величину этого отклонения-степенью точности измерения. Ясно, что чем точнее требуется измерить деталь, тем качественнее должен быть измерительный инструмент и способы измерения. Поэтому в зависимости от точности измерений применяются соответственно и измерительные инструменты, наиболее употребительные из которых следующие:

Стальная линейка. Изготовляется длиной от 150 до 500 мм (фиг. 207) и служит для измерения небольших длин. Точность измерения стальной линейкой достигает 0,25 -0,5 мм, в зависимости от навыка измеряющего.

Метр . Для измерения больших длин применяются метры (фиг. 208), которые изготовляются деревянными и стальными. Деревянные метры бывают только складные и употребляются обычно для грубых измере­ний. Стальные метры изготовляются складными и в виде рулетки. Склад­ные стальные метры, как и деревянные, служат для грубых измерений. Недостатком складных деревянных и стальных метров является то, что у них разбалтываются шарниры соединений, вследствие чего они дают большие погрешности. Поэтому при измерении лучше пользоваться метром-рулеткой. Метры-рулетки изготовляются одно- и двухметровые. Точность измерения такими метрами равна 0,25-0,5 мм, т. е. такая же, как и при измерении стальной линейкой.

Штангенциркуль . Штангенциркуль служит для более точных изме­рений длин и диаметров (фиг. 209). Он состоит из штанги 1 с нанесён­ными на ней делениями в миллиметрах. На левом конце её имеется неподвижная губка 2. Подвижная губка 3 с рамкой 4, нониусом и за­крепительным винтом соединены с ползунком 6 посредством микроме­трического винта 5. На микрометрический винт 5 навинчена накатанная гайка 7. Ползунок 6 закрепляется на штанге винтом 3.

Кроме описанного, существуют также штангенциркули с глубино­мером (фиг. 212).

Штангенциркулем можно производить измерения с точностью 0,1 - 0,025 мм.

Нониус штангенциркуля обычно разделён на 10 равных частей, при­чём каждое его деление равно 0,9 мм, следовательно, 10 делений нониуса равны 9 делениям штанги, т. е. 9 мм.

Если губки штангенциркуля сдви­нуть вплотную, то первый штрих но­ниуса, обозначенный нулём, совпадает с нулевым делением штанги, а деся­тое деление нониуса-с девятым её делением (фиг. 210). Разность между первым делением штанги и первым делением нониуса составляет 0,1 мм, для второго деления-0,2 мм, третьего-0,3 мм и девятого- 0,9 мм. Поэтому если подвижную губку сдвинуть вправо так, что первое деление нониуса совпадёт с первым делением штанги, то к целому числу миллиметров, находящихся влево от нулевого деления нониуса, необхо­димо добавить 0,1 мм; при совпадении второго деления -0,2 мм, третьего-0,3 мм и т. д.

Точность измерения штангенциркулем равняется отношению одного деления штанги к числу делений нониуса. Если нониус поделён на 10 равных частей, то точность измерения будет равна 0,1 мм. Чтобы уста­новить штангенциркуль на заданный размер, перемещают подвижную губку вправо до тех пор, пока нулевое деление нониуса не совпадёт с нужным целым числом миллиметров на штанге, и продолжают переме­щать губку в том же направлении до тех пор, пока требуемое деление на нониусе не совпадёт с ближайшим к нему делением на штанге. Де­ление нониуса, совпадающее с каким-либо делением штанги, укажет на число десятых долей миллиметра. Если, например, требуется установить штангенциркуль на размер 38,4 мм, то для этого освобождают закреп­ляющий рамку винт и перемещают её так, чтобы нулевое деление нониуса совпало с 38-м делением штанги. Если штангенциркуль снабжён ползуном, то установка нониуса на размер 0,4 мм осуществляется вра­щением гайки 7 до тех пор, пока четвёртое деление нониуса не совпа­дёт с ближайшим делением штанги (фиг. 211, а).

Чтобы прочесть измеренный штангенциркулем размер детали, необ­ходимо заметить, с каким делением штанги совпадает нулевое деление нониуса. Совпавшее деление и будет показывать величину размера измеренного элемента детали. Если же нулевое деление нониуса не совпадает с целым числом делений на штанге, то замечаем на штанге ближайшее число слева от нуля нониуса и добавляем к нему число долей миллиметра на нониусе, совпадающее с ближайшим делением штанги.

На фиг. 211, б показан размер 45,3 мм соответственно измеренному размеру детали штангенциркулем.

На фиг. 210 показано измерение отверстия нижней парой губок. В этом случае к размеру, указываемому штангенциркулем, необходимо прибавлять толщину концов губок, которая обычно составляет 8 или 10 мм.

Как уже упоминалось, некоторые штангенциркули имеют приспособ­ление для измерения глубины, так называемый глубиномер (фиг. 212).

Глубиномер прикреплён к рамке подвижной губки. Измеряемая глубина отсчитывается так, как и при измерении толщины или диаметра детали.

Микрометр . Микрометр (фиг. 213) является более точным измери­тельным инструментом, чем штангенциркуль. С помощью микрометра можно производить измерения с точностью до 0,01 мм.

Микрометр состоит из плоской скобы 7, пятки 2, шпинделя 3, зажим­ного кольца 4, трубки с делениями 5, гильзы 6 и трещотки 7. С труб­кой 5 соединён подвижный шпиндель 3 с резьбой, имеющей шаг 0,5 мм.

Вращением гильзы можно установить шпиндель на нужную величину. В случае, когда шпиндель упрётся в пятку, т. е. когда расстояние между пяткой и торцом шпинделя равно нулю, нулевое деление нониуса дол­жно быть на нулевом делении трубки. Головка трещотки связана с трещоткой внутри микрометра. Трещотка позволяет сохранять опреде­лённое постоянное давление шпинделя на измеряемый предмет. В случае превышения этого давления головка начинает проскакивать, производя при этом треск.

На трубке и скошенной кром­ке гильзы имеются деления, число которых на гильзе равно 50, а на трубке - соответственно номиналь­ному размеру микрометра. Расстоя­ние между делениями на трубке равно 0,5 мм. При одном полном обороте гильзы шпиндель переме­щается на 0,5 мм. Таким образом, при повороте гильзы на одно деление шпиндель переместится на 0,01 мм.

По делениям на трубке отсчитывают целое число и половины мил­лиметров, а по делениям на гильзе-сотые доли миллиметра.

Сумма отсчётов на трубке и гильзе показывает расстояние между пяткой и торцом шпинделя микрометра.

На фиг. 214, а показаны деления микрометра, установленного на величину, равную 14,31 мм, а на фиг. 214, б - на 12,38 мм.

При измерении микрометром во избежание ошибок необходимо с момента подхода шпинделя к измеряемой детали примерно на расстоя­нии 1-2 мм вращать не гильзу, а головку трещотки.

Микрометрический штихмас . Штихмас (фиг. 215) служит для изме­рения диаметров отверстий и по устройству имеет сходство с измерительным устройством микрометра. Шгихмас состоит из гильзы, снаб­жённой наконечником со сфериче­ской поверхностью 2. В гильзу 7 входит микрометрический винт, имеющий на конце сферическую поверхность 5. Результаты измере­ния отсчитываются по делениям на трубке 3 (целые числа и половины миллиметров) и по делениям гильзы 4 (сотые доли миллиметра). Таким образом, результат измерения является суммой двух отсчётов.

Как и у микрометра, на скошенной кромке гильзы имеется 50 деле­ний, а на трубке 3 штихмаса нанесены миллиметровые деления.

Если гильза 4 сделает один полный оборот, то винт с наконечни­ком 5 переместится на 0,5 мм, следовательно, при повороте гильзы на одно деление её шкалы, т. е. на 1/50 часть оборота, винт переместится на 0,01 мм.

На фиг. 215 штихмас показывает, что расстояние между торцами наконечников 2 и 5 равно 82 мм. Эта величина получилась от сложения двух размеров: номинального размера штихмаса, равного 63 мм (за номинальный размер штихмаса принимают расстояние между меритель­ными торцами 2 и 5 при совпадении нуля нониуса с нулевым делением трубки) и отсчёта по делениям трубки и нониуса. В данном случае эта величина составляет 19 мм. Таким образом, 63+19=82 мм.

Микрометрический глубиномер (фиг. 216) имеет такое же устрой­ство, как и микрометр. Глубиномер состоит из поперечины 1, имеющей измерительную плоскость, жёстко скреплённую со стеблем 2. Внутри стебля имеется винт с измери­тельным стержнем 3 и сто­порное кольцо 4, гильза 5 и трещотка 6. При измерении поперечину прижимают изме­рительной плоскостью к де­тали и производят измерение так, как при измерениях ми­крометром.

Угломер . Угломером называется прибор, при помощи которого про­изводится построение и измерение углов деталей. Угломеры изготов­ляются с нониусом и без нониуса. Наибольшее распространение в СССР получили угломеры с нониусом, заводов „Красный инструментальщик"" и „Калибр".

Угломер завода „Красный инструментальщик" (фиг. 217) состоит из полудиска 1 с прикреплённой к нему линейкой 2. Подвижная линейка 3, жёстко скреплённая с нониусом 4, вращается вокруг оси О. Для точной установки нониуса пользуются микрометрическим винтом 5. При изме­рении углов от 0 до 90° на линейку 3 надевают угольник 6. Точность измерения для этого угломера находится в пределах 2". Более совер­шенным угломером является угломер завода „Калибр" конструкции Д. С. Семёнова (фиг. 218, а). Этот угломер состоит из дуги 1 с нане­сённой на ней градусной шкалой, по которой перемещается пластинка 2 и жёстко прикреплённый к ней нониус 3. На пластинке 2 имеется дер­жатель 4, при помощи которого закрепляется угольник 5 с линейкой 6.

Пластинка 7 жёстко соединена с дугой 1. Основная градусная шкала разделена на 130°, однако путём установки в различные положения измерительных деталей угломера можно измерять углы от 0 до 320° (фиг.218, б). Точность измерения для угломеров этой конструкции - 2".

Чтобы сделать, например, отсчёт угла? по такому угломеру, когда угольник занимает положение, отмеченное буквой А (фиг. 218, а), необ­ходимо прежде всего посмотреть, между какими делениями расположено нулевое деление нониуса. На фиг. 218, а это деление расположено между цифрами 33 и 34 основной градусной шкалы. После этого находят справа то деление нониуса, которое совпадает с одним из ближайших делений основной шкалы. В данном случае совпадает деление, соответствующее 10". Следовательно, искомый угол а составляет 33° 10". Легко понять, откуда получены 10". Деление, соответствующее десяти минутам-пятое справа от нулевого деления нониуса. Так как цена каждого деления нониуса равна 2", то для пяти делений это составит 2"X5=10".

Пусть, например, требуется измерить угол p, соответствующий поло­жению угольника, отмеченного буквой Б. Легко видеть, что угол? является тупым углом, состоящим из суммы углов: а и прямого угла.

Величина угла а определена раньше и равна 33° 10". Таким образом, угол? = a + 90° = 33°10" + 90° = 123°10".

Кронциркуль и нутромер (фиг. 219, а и б) являются вспомога­тельными инструментами и применяются для измерения величин путем переноса размера с изделия на измерительный инструмент или наоборот.

Кронциркулем производится измерение наружных размеров деталей, нутромером - внутренних.

Кронциркуль и нутромер состоят из двух стальных ножек, соеди­нённых шарниром.

Точность измерения этими инструментами невелика.

Рейсмас . Рейсмасом (фиг. 220) пользуются при нанесении на деталях параллельных линий, при разметочных работах и измерении недоступных мест деталей, когорые не могут быть измерены обычно применяемыми инструментами. Простейший рейсмас (фиг. 220, а) состоит из стального стержня, перемещающегося по пазу стойки и затем закрепляющегося на стойке при помощи барашка. Стойка рейсмаса укреплена на подставке. Работа рейсмасом производится на разметочной плите.

Штангенрейсмас (фиг. 220, б). Для точных измерений и разметоч­ных работ применяют штангенрейсмас с нониусом. Подвижное устрой­ство с чертилкой и нониусом передвигается по линейке и закрепляется в нужном положении винтами. Точная установка по нониусу произво­дится так же, как и у штангенциркуля.

Резьбомеры . Для определения шага резьбы или числа ниток на 1" на резьбовых изделиях служат резьбомеры (фиг.221). Резьбомеры изго­товляются для разных систем резьбы и представляют собой набор сталь­ных гребёнок, заключённых в колодку.

Определение шага резьбы или количества ниток на 1" производится путём подбора профиля гребёнки, соответствующего углу профиля резьбы. Гребёнка точно укажет шаг резьбы или количество ниток, приходящихся на 1" (фиг. 221, б).

Чтобы убедиться в правильности найденного шага резьбы или числа ниток, приходящихся на 1", необходимо дополнительно измерить наруж­ный диаметр резьбы при помощи штангенциркуля и сверить получен­ные данные с данными соответствующего стандарта на резьбу. Если данные измерения совпадают, то шаг или число ниток определены пра­вильно, в противном случае измерение нужно повторить. При определе­нии этих величин необходимо внимательно смотреть, правильно ли подобран резьбомер, т. е. соответствует ли угол профиля резьбомера профилю резьбового изделия. Для более точных измерений резьб применяют специальные резьбовые микрометры, резьбовые калибры, универсальные и инструментальные микроскопы.

В технике под таким понятием, как измерение , подразумевается некая совокупность действий, результатом совершения которых является определение того числового значения, которое имеет некая физическая величина предмета. Измерения производятся при помощи специальных технических средств опытным путем.

В такой отрасли промышленности, как машиностроение, без проведения разнообразных измерений обойтись совершенно невозможно. От того, с какой точностью они осуществляются, в результате напрямую зависит качество выпускаемой продукции. Что касается значений точности измерений , то на современных машиностроительных предприятиях она, как правило, в пределах от 0,001 миллиметра до 0,1 миллиметра.

Для того чтобы быстро и с минимальными погрешностями производить технические измерения , используются специализированные приборы и конструкции.

Металлическая линейка

Именно этот мерительный инструмент является, пожалуй, наиболее простым по своей конструкции. С помощью металлических линеек значение измеряемой величины определяется непосредственно.

Металлическая линейка

Следует заметить, что эти мерительные приспособления широко используются также и для проведения разметки материалов и деталей. Современная промышленность изготавливает их с пределами измерений в 1000 , 500 , 300 и 150 миллиметров, при этом на них наносится или одна, или две шкалы.

Штангенциркуль

Этот широко распространенный и активно используемый в технике (особенно в машиностроении) мерительный инструмент устроен намного сложнее, чем металлическая линейка, и обеспечивает гораздо более высокую точность измерений. Штангенциркуль состоит из таких основных частей, как линейка-штанга, на грани которой нанесена основная шкала с равноудалёнными делениями через 1 миллиметр, и нониус – отсчетное приспособление с дополнительной штриховой шкалой.


Штангенциркуль

Цена деления нониусов современных штангенциркулей составляет или 0,1 , или 0,05 миллиметра, а что касается предела измерений, то он достигает 2000 миллиметров.

Штангенциркули используются для осуществления измерений как наружных, так и внутренних размеров деталей, а также глубин отверстий. Кроме того, их применяют для производства различных разметочных работ.

Штангенрейсмас

Штангенрейсмас

Этот мерительный инструмент предназначается для того, чтобы производить измерения высот деталей и осуществлять их точную разметку. Максимальный предел измерений штангенрейсмасов составляет 2500 миллиметров, а цена деления их нониусов – 0,1 или 0,05 миллиметра.

В большинстве случаев этот мерительный инструмент используется при работах на специальных чугунных плитах. Именно на них он устанавливается вместе с теми деталями, которые нужно измерить или же разметить.

Для того чтобы с помощью штангенрейсмаса нанести на размечаемой детали линию, используется специальная сменная ножка. Сам же мерительный инструмент при этом перемещается непосредственно по поверхности плиты.

Микрометр

Мерительный инструмент этого типа предназначается для того, чтобы производить достаточно точные измерения малых линейных размеров. Максимальный предел измерений современных микрометров достигает 600 миллиметров, а точность – 0,01 миллиметра.


Микрометр

Микрометры (как, впрочем, и все микрометрические инструменты) оборудованы специальными отсчетными узлами, устроенными на основе винтовой пары, имеющей шаг резьбы 0,5 миллиметра. С ее помощью осуществляется преобразование продольного перемещения мерительного винта в перемещения окружные, совершаемые шкалой барабана. Именно на основании угла его поворота и определяется значение измеряемого размера.


Микрометрический глубиномер

Микрометрический глубиномер

По сути дела этот мерительный инструмент устроен точно так же, как и микрометр. Разница состоит лишь в том, что он оснащается не скобой, а основанием. Именно в него устанавливается так называемый мерительный стебель. Для того чтобы с помощью микрометрического глубиномера измерить глубину, применяется специальный стержень. Он устанавливается на винте и имеет особую форму. Предел измерений современных микрометрических глубиномеров составляет до 300 миллиметров, а цена деления их нониусов - 0,01 миллиметра.


Индикатор часового типа

Индикатор часового типа

Этот мерительный инструмент представляет собой устройство, где совсем небольшие перемещения, которые производит измерительный щуп, преобразуются в угловые перемещения стрелки. Индикаторы часового типа используются тогда, когда требуется со значительной степенью точности определить те отклонения, которые по своей геометрической форме некая деталь имеет по отношению к заданным параметрам. Кроме того, эти приборы используются для контроля взаимного расположения поверхностей.


Угломер механический

Угломер

Этот мерительный инструмент предназначен для определения значений углов, которые в технике очень часто встречаются в различных сборках, деталях и конструкциях. С помощью угломеров производятся измерения в углах, градусах и секундах, для чего используются вспомогательные элементы и линейчатая шкала.


Резьбомер

Резьбомер

Этот мерительный инструмент используется для того, чтобы точно определять шаг и профиль резьбы. Конструктивно он представляет собой пакет металлических шаблонов, каждый из которых в точности повторяет конфигурацию той или иной резьбы. Резьбомеры, которые предназначены для определения шага метрических резьб, имеют маркировку М60° , а те мерительные приспособления, которые предназначаются для определения количества ниток на дюйм, при измерении дюймовых и цилиндрических трубный резьб, маркируются как Д55 .


Радиусомер

Радиусомер

Этот мерительный инструмент предназначен для измерения галтелей и радиусов закруглений. Он представляет собой набор металлических шаблонов, изготовленных в виде пластин из высококачественной легированной стали. При этом все они подразделяются на те, что используются для измерения выступов и те, которые предназначены для измерения впадин.


Концевые меры длины

Концевые меры длины

Концевые меры длины (нередко их называют еще «плитками Иогансона ») представляют собой меры, выполненные в виде цилиндра или параллелепипеда, имеющие строго определенные расстояния между измерительными плоскостями. Они могут составлять от 0,5 миллиметра до 1000 миллиметров.

Современное производство немыслимо без измерительного инструмента, различные его виды используются повсеместно. С помощью осуществляется контроль за качеством продукции, за различными технологическими процессами производства. Измерительный инструмент используется в машиностроении, научных лабораториях, строительстве и в быту.

Измерительные инструменты – это средства измерений для предоставления результатов измеряемых физических величин в строгом диапазоне. Если инструмент помимо физических параметров позволяет определить находятся ли размеры объекта в пределах допустимых значений, то он является контрольно-измерительным.

Измерительные инструменты позволяют определить геометрическую форму и размер объекта, его плотность и упругость, прямолинейность и плоскостность.

Каждый измерительный инструмент имеет погрешность, потому что провести абсолютно точное измерение практически невозможно. Именно от значения этой погрешности зачастую зависит цена инструмента. Чем меньше погрешность, тем выше стоимость изделия. Но при использовании любого инструмента возможна ошибка в измерении. Такое происходит от неправильного использования инструмента, его неисправности или загрязнении. Так же ошибки происходят при загрязнении измеряемого объекта, при несоблюдении температурного режима. Чтобы снизить вероятность ошибки и уменьшить погрешность нужно соблюдать правила эксплуатации измерительного инструмента.

По ГОСТ измерительные приборы делятся на 8 групп:

  • Калибры гладкие
  • Калибры резьбовые
  • Калибры комплексные и профильные
  • Меры и поверочный инструмент
  • Приборы, инструмент и приспособления нониусные
  • Приборы, инструмент и приспособления механические
  • Приборы, инструмент и приспособления оптикомеханические и электромеханические
  • Пневматические приборы и приспособления

Первые 3 группы относятся к специальным типам измерительных инструментов, 5 следующих к универсальному типу. Универсальные инструменты используются для измерения разных линейных параметров изделия, независимо от его конфигурации.

Они включают в себя следующие широко распространенные виды измерительного инструмента:

  1. Штангенинструменты, действие которых основано на применении нониуса, позволяющего отсчитывать дробные деления (штангенциркуль — применяется для высокоточных измерений наружных и внутренних измерений, а также глубины отверстий, штангенглубиномер — нужен для измерения глубины отверстий с высокой точностью, штангенрейсмас — используется для разметки деталей, глубины пазов и выемок).
  2. Уровень, который позволяет измерить отклонение деталей конструкции по горизонтали и вертикали.
  3. , который позволяет с высокой точностью измерять малые размеры.
  4. Нутромер измеряет размер отверстий, пазов и других внутренних поверхностей.
  5. Угольники и угломеры, позволяющие визуализировать и измерять углы.
  6. Щупы, предназначенные для контроля зазоров между поверхностями.
  7. Шаблоны, в зависимости от вида, используемые для измерения радиуса поверхности или шага профиля резьбы.

Также к универсальным измерительным инструментам можно добавить привычные линейки и рулетки.
К специализированным измерительным инструментам относятся различные калибры, которые предназначены для проверки правильности размеров и форм изделий и позволяют установить, что изделия соберутся друг с другом, а сборка будет правильной. Калибры позволяют измерить какой-то один определенный размер изделия. Они не измеряют фактический размер, а позволяют проверить, что изделие не вышло за пределы указанных в чертеже границ.

Торговый дом «Квалитет» предоставит Вам широкий ассортимент всех видов измерительного оборудования.


К атегория:

Помощь рабочему-инструментальщику

Измерительные приборы и инструменты

Измерительными приборами и инструментами называют устройства, с помощью которых определяют размеры различных деталей.

Универсальные приборы и инструменты по конструктивным признакам разделяют на штриховые инструменты с нониусом - штангенинструменты и угломеры; микрометрические инструменты - микрометры; рычаж-но-механические приборы - индикаторы; оптико-механические приборы - микроскопы и др.

Штангенинструменты находят широкое применение в промышленности для измерения деталей с точностью 0,1; 0,05 и в редких случаях 0,02 мм. Относительно высокая точность штангенинструментов достигается за счет специального устройства - линейного нониуса.

Основными деталями штангенинструмента являются линейка-штанга, на которой нанесена шкала с миллиметровыми делениями, и рамка с вырезом, на наклонной грани которого сделана нониусная (вспомогательная) шкала (рис. 1). В зависимости от количества делений нониуса действительные размеры детали можно определять с точностью 0,1-0,2 мм. Например, если шкала нониуса (рис. 1, а) длиной 9 мм разделена на 10 равных частей, то, следовательно, каждое деление нониуса равно 9:10 = 0,9 мм, т. е. короче деления на линейке на 1-0,9 = 0,1 мм.

При плотно сдвинутых губках штангенинструмента нулевой штрих нониуса совпадает с нулевым штрихом штанги, а десятый штрих нониуса - с девятым штрихом штанги.

Рис. 1. Устройство нониуса.

При такой так называемой нулевой установке штангенинструмента первое деление нониуса не дойдет до первого деления линейки-штанги на 0,1 мм, второе - на 0,2 мм, третье - на 0,3 мм и т. д. Если передвинуть рамку таким образом, чтобы первый штрих нониуса совпал с первым штрихом штанги, то зазор между губками будет равен 0,1 мм. При совпадении, например, шестого штриха нониуса с любым штрихом штанги зазор будет равен 0,6 мм и т. д.

Для отсчета действительного размера по штанген-инструменту количество целых миллиметров нужно взять по шкале штанги до нулевого штриха нониуса, а количество десятых долей миллиметра - по нониусу, определив, какой штрих нониуса совпадает со штрихом основной шкалы.

Растянутый нониус (рис. 1) удобнее простого, так как имеет более длинную шкалу- 19 мм. Она разделена на 10 равных частей: 19: 10=1,9 мм, что короче деления основной шкалы на 0,1 мм.

Нониусы с ценой деления 0,05 и 0,02 мм устроены аналогично.

У штангенинструментов с точностью 0,05 мм шкала нониуса равна 19 мм и разделена на 20 делений. Каждое деление нониуса равно 19:20 = 0,95 мм, т. е. короче деления основной шкалы на 1-0,95 = 0,05 мм (рис. 1, в).

Штангенциркули служат для измерения наружных и внутренних размеров, прочерчивания дуг окружностей и параллельных линий при разметке, для деления окружностей и прям-ых линий на части и других операций.

Отечественная промышленность выпускает следующие типы штангенциркулей: ШЦ-1-с двусторонним расположением губок для наружных и внутренних измерений и с линейкой для измерения глубин с отсчетом по нониусу 0,1 мм и с пределами измерения 0…125 мм; ШЦ-П - с двусторонним расположением губок для измерения и для разметки с отсчетом по нониусу 0,05 и 0,1 мм и с пределами измерения 0…200 и 0…320 мм; ШЦТП - с односторонними губками с отсчетом по нониусу 0,05 и 0,1 мм и с пределами измерения 0…500 мм; с отсчетом по нониусу 0,1 мм и с пределами измерения 250…710, 320…1000, 500…1400 и 800…2000 мм.

Штангенциркуль с точностью измерения 0,1 мм (рис. 2, а) имеет штангу, которая представляет собой линейку с основной шкалой, и измерительные губки. Рамка с двумя измерительными губками и стержнем может перемещаться по штанге. Для закрепления рамки в нужном положении служит винт. При перемещении рамки вправо на одну и ту же величину раздвигаются измерительные губки 1 и 9, 2 и 3 и выдвигается стержень.

Длинные губки предназначены для измерения наружных размеров, короткие - внутренних, а стержень - для измерения глубин. Нониус штангенциркуля нанесен на рамке.

Штангенциркуль с точностью измерения 0,05 мм (рис. 2,б) отличается от рассмотренного выше тем, что не имеет стержня для измерения глубин, однако имеет установочное приспособление. Для более точной настройки здесь добавлено устройство, состоящее из рамки с зажимным винтом и микрометрической гайкой, навернутой на винт. Последний жестко закреплен в движке и свободно проходит через отверстие в рамке. Если винтом закрепить рамку и затем вращать гайку, то движок штангенциркуля начнет плавно перемещаться вдоль штанги, обеспечивая более точную установку нониуса. Винт предназначен для закрепления подвижной рамки в нужном положении.

Рис. 2. Штангенциркули.

При определении штангенциркулем внутренних размеров к полученным по шкале размерам необходимо добавить ширину измерительных губок, которая обычно на них указана.

Штангенглубиномер предназначен для измерения высот и глубин различных деталей. Он построен по принципу штангенциркуля, однако штанга не имеет губок. Рабочими (мерительными) поверхностями являются нижняя плоскость рамки А (рис. 3) и торцевая поверхность Б штанги. На другом конце штанги имеется третья.рабочая поверхность В для измерения длин в труднодоступных местах. Штангенглубиномер состоит из штанги, микрометрического устройства для точной наводки штанги, винта, движка для микрометрической подачи, винта, гайки, нониуса, винта для зажима рамки, основной рамки и основания.

Штангенглубиномеры изготовляют с отсчетом по нониусу 0,05 и 0,1 мм и с пределами измерения 0…200, 0…300, 0…400 и 0…500 мм.

Штангенрейсмус служит для измерения высот, глубин и для разметки деталей. Изготовляются штангенрейсмусы с пределами измерения 0…200, 30…300, 40…500, 50…800 и 60… 1000 мм и точностью измерения 0,1 и 0,05 мм.

Конструкция штангенрейсмуса в основном повторяет конструкции штангенциркуля и штангенглубиномера. Он имеет измерительные поверхности, основание, хомутик кронштейна, сменную ножку, кронштейн, винт для зажима хомутика, нониус, микрометрическую гайку, винт подачи, штангу, основную шкалу, рамку микрометрической подачи, винт зажима движка, рамку и винт для зажима рамки.

Измерительными поверхностями являются плоскость разметочной плиты, на которой производятся разметки и измерения, и две поверхности сменной ножки: верхняя -для внутренних измерений и нижняя - для наружных. Сменные ножки устанавливают в хомутике и зажимают винтом. Для измерения высот и глубин вместо сменных ножек в рамке закрепляют шпильки. Остро заточенную ножку применяют при разметке.

К штангенрейсмусу прилагается сменных ножек: одна остроконечная - для разметки, одна - с двумя измерительными поверхностями и три ножки-шпильки - для измерения высот и глубин. При измерении внутренних поверхностей к показаниям шгангенрейсмуса необходимо прибавить толщину ножки, которая на ней указана.

Угломеры. Для измерения углов деталей широко используются угломеры с нониусом двух типов (ГОСТ 53/8-66): УМ - транспортирный для измерения наружных углов и УН - универсальный для измерения наружных и внутренних углов. Кроме механических угломеров в соответствии с ГОСТ ом 11197-73 промышленность выпускает оптические типа УО с величиной отсчета 1 - 5”.

Угломер типа УМ, предназначенный для измерения наружных углов от 0 до 180°, имеет основание в виде полудиска с делениями от 0 до 120° через каждый градус, с которым жестко соединены линейки. Последняя - подвижная, она может быть повернута вокруг оси вместе с сектором и нониусом относительно основания и линейки. Нониусная шкала построена так же, как у штангенинструментов. Наличие на ней 30 делений обеспечивает точность измерения в 2”. Узел микрометрической подачи повышает точность измерения.

Рис. 3. Штангенглубиномер.

Рис. 4. Штангенрейсмус.

Рис. 5. Угломеры.

На подвижной линейке может быть закреплен угольник для измерения углов от 0 до 90°. Углы свыше 90° измеряются без угольника, при этом к полученному результату добавляется 90°. Фиксация сектора относительно основания угломера осуществляется стопором.

Угломер типа УН служит для измерения наружных углов от 0 до 180° и внутренних - от 40 до 180°. Угломер имеет основание с градусной шкалой, жестко соединенной с ним линейкой. Нониусная шкала нанесена на секторе, который перемещается по основанию и фиксируется в требуемом положении стопором. С сектором хомутика соединяется угольник, ас угольником - линейка. Узел микрометрической подачи повышает точность измерения.

Для измерения углов от 0 до 50° пользуются угломером, линейкой и угольником; от 50 до 140°-вместо угольника в хомутик устанавливают линейку; от 140 до 230°-в хомутик вставляют угольник, а второй хомутик и линейку снимают; измерение углов от 230 до 320° производят при снятом хомутике, т. е. без угольника и линейки.

Повышение точности отсчета по основной шкале угломера обеспечивается, как и у штангенинструментов, применением штрихового нониуса. Принцип построения нониуса у угломеров такой же, как у аггангенинстру-ментов.

Микрометрические инструменты. Устройство микрометрических инструментов основано на использовании принципа винтовой пары гайка - винт. Вращательное движение, например, винта связано одновременно с поступательным перемещением его относительно гайки. При одном полном обороте винта его продольное перемещение будет равно шагу резьбы. Во всех микрометрических инструментах шаг резьбы S = 0,5 мм. При повертывании винта на один оборот его измерительная поверхность переместится на 0,5 мм.

Точность микрометрических инструментов зависит от точности изготовления резьбы винтовой пары и постоянства шага. Они обеспечивают точность измерения до 0,01 мм.

Микрометры для наружных измерений размеров от 0 до 600 мм выпускаются по ГОСТ у 6507-78. Устройство микрометра показано на рис. 6. В скобу запрессованы пятка и стебель. Микрометрический винт ввинчивается в микрогайку. Гладкое отверстие стебля обеспечивает точное направление микровинта. Для исключения зазора в резьбе микропары резьба микрогайки выполнена на ее разрезанном конце, снабженном наружной резьбой и конусом. На эту резьбу навинчивают регулировочную гайку, которой стягивают микрогайку до тех пор, пока микровинт не будет перемещаться в ней без зазоров. На микровинт надевается барабан, закрепляемый установочным колпачком, в котором просверлено глухое отверстие для пружины и зуба, упирающегося в зубчатую поверхность трещотки 10. Последняя отрегулирована так, что при увеличении измерительного усилия свыше 900 гс она не вращает винт, а проворачивается. Для закрепления микрометрического винта в определенном положении предусмотрено стопорное приспособление, состоящее из втулки и винта. Микрометры с пределами измерения свыше 25 мм снабжаются установочными мерами для установки их на нижний предел измерения.

Шкалы микрометра расположены на наружной поверхности стебля и на окружности скоса барабана. На стебле находится основная шкала, представляющая собой продольную риску, вдоль которой (ниже и выше) нанесены миллиметровые штрихи, причем верхние штрихи делят нижние пополам. Каждый пятый миллиметровый штрих основной шкалы удлинен, а около него поставлена соответствующая цифра: 0, 5, 10, 15 и т. д.

Рис. 6. Микрометр.

Шкала барабана (или круговая шкала) предназначена для отсчета сотых долей делений основной шкалы и разделена на 50 равных частей. При повороте барабана на одно деление по окружности, т. е. на ‘/so часть оборота, измерительная поверхность микрометрического винта перемещается на ‘/so шага резьбы винта, т. е. на 0,5:50 = 0,01 мм. Следовательно, цена каждого деления барабана составляет 0,01 мм.

При измерении микрометром деталь помещают между мерительными поверхностями и, вращая трещотку, прижимают ее шпинделем к пятке. После того как трещотка начнет провертываться, издавая треск, шпиндель микрометра закрепляют зажимным кольцом и производят отсчет показаний. Целое число миллиметров отсчитывают по нижней шкале стебля, половины миллиметров - по верхней шкале, а сотые доли миллиметра - по шкале барабана. Число сотых долей миллиметра отсчитывают по делению шкалы барабана, совпадающему с продольной линией на втулке. Например, если на шкалах микрометра видно, что край барабана перешел седьмое деление, а сам барабан по отношению к продольной линии на стебле повернулся на 23 деления, то полное показание шкал микрометра составит 7,23 мм.

Микрометрические нутромеры выпускают согласно ГОСТ у 10-75 с пределами измерения 50…10 000 мм. Наибольшее распространение получили нутромеры с пределами измерения 75… 175 и 75…600 мм.

Нутромер состоит из микрометрического винта, барабана, стебля со стопором, установочной гайки и измерительных наконечников. Гайка предохраняет резьбу на конце стебля от повреждения.

Как и у микрометра для наружных измерений, шаг резьбы винта нутромера равен 0,5 мм. Максимальный ход микрометрического винта составляет 13 мм. Максимальный предел измерения основной головкой нутромера 50…63 мм.

Чтобы увеличить предел измерения, применяют удлинители - стержни размерами от 500 до 3150 мм, заключенные в цилиндрические трубки. Для соединения удлинителя с нутромером на одном конце удлинителя нарезается наружная резьба, а на другом - внутренняя.

Измерение микрометрическим нутромером производят несколько раз, слегка поворачивая его по окружности отверстия и отыскивая при этом наибольший размер, а также вокруг оси, перпендикулярной оси отверстия, определяя при этом наименьший размер.

Микрометрические глубиномеры изготовляются по ГОСТ у 7470-78 с пределом измерений 0…150 мм и с рабочим ходом винта 25 мм. Они служат для измерения глубины глухих отверстий и полостей.

При использовании сменных удлинителей пределы измерения могут быть расширены.

При измерении глубиномер прижимают измерительной плоскостью траверсы к поверхности детали. Для плотного прилегания траверсы к детали усилие нажатия на глубиномер должно несколько превышать усилие измерения.

Рис. 7. Микрометрический нутромер (а); удлинитель (б) и микрометрический глубиномер (в).

Рычажно-механические приборы получили широкое распространение инструментальном производстве, так как они надежны в pa-боте, им«ют относительно высокую точность измерения и универсальны. Принцип их действия основан на использовании специального пере-даточного механизма, который незначительные перемещения измерительного стержня преобразует в увеличенные и удобные для отсчета перемещения стрелки на шкале.

К наиболее известным типам рычажно-механических приборов относятся индикаторы, рычажные скобы, рычажные микрометры и миниметры.

Индикаторы часового типа выпускаются по ГОСТ у 577-68 с ценой деления 0,01 мм и пределами измерения от 0 до 10 мм в зависимости от типоразмера.

Рис. 8. Индикатор часового типа.

Измерительный стержень индикатора изготовлен в виде зубчатой рейки, которая находится в зацеплении с зубчатым колесом J2 с числом зубьев Z = 16. На одной оси с ним закреплены стрелки и промежуточное зубчатое колесо с числом зубьев Z- 100. Это колесо находится в зацеплении с зубчатым колесом с числом зубьев Z= 10, на оси которого закреплена стрелка-указатель, показывающая величину линейных перемещений измерительного стержня, в долях миллиметра, по круговой шкале. Для удобства пользования шкала связана с ободом индикатора и вместе с ним может быть повернута на любой угол. Колесо и спиральная пружина ликвидируют погрешность мертвого хода передачи при возвратно-поступательных движениях стержня. Цилиндрическая пружина И обеспечивает контакт наконечника стержня с контролируемой поверхностью.

Передаточное отношение индикатора подобрано таким образом, чтобы при линейном перемещении стержня на 1 мм указатель сделал один полный оборот. Круговая шкала разбита на 100 делений. Следовательно, цена одного деления ее составляет 0,01 мм. Количество полных оборотов указателя показывает стрелка на шкале.

При выполнении измерений индикаторы устанавливают в стойках, на штативах или в специальных приспособлениях.

Индикаторная скоба применяется для измерения деталей 6-го и 7-го квалитетов. Все рычажные Скобы имеют диапазон измерения 0…25 мм, обеспечиваемый за счет перемещения переставной пятки. Цена деления отсчетного устройства у скоб с верхним пределом измерения до 100 мм -0,002 мм, а 125 и 150 мм - 0,005 мм. Пределы измерения по шкале соответственно равны ±0,08 и ±0,15 мм.

Индикаторная скоба имеет жесткий корпус с двумя соосными цилиндрическими отверстиями, в одном из которых установлена переставная измерительная пятка, а в другом- подвижная пятка, находящаяся в постоянном контакте с измерительным наконечником индикатора. Измерительное усилие создается совместным действием пружины и пружины индикатора. Пятка может свободно перемещаться в пределах 50 мм у скоб малых размеров и 100 мм - у скоб больших размеров. После установки скобы на размер положение пятки фиксируется стопором и она закрывается предохранительным колпачком.

Рис. 9. Индикаторная скоба.

Для удобства измерения скоба снабжена упором, который при настройке скобы на размер устанавливается так, чтобы линия измерения проходила через ось проверяемой детали. Корпус имеет ручку с теплоизоляционными накладками. Измерительный стержень отводится рычагом

Рычажный микрометр. Устройство хвостовой части рычажного микрометра такое же, как и обычного микрометра, с той лишь разницей, что в ней отсутствует^ трещотка.

Рис. 10. Рычажный микрометр.

В корпусе микрометра помещен измерительный контакт, перемещение которого влево заставляет поворачиваться рычаг, зубчатый сектор и зубчатое колесо, на оси которого закреплена стрелка. Пружина служит для устранения зазора в зацеплении сектора с колесом и возвращения стрелки и рычага в первоначальное положение. Для отвода измерительного контакта влево имеется устройство, состоящее из рычага, пружинки и кнопки. Пружина предназначена для создания нормального мерительного усилия. Стопор фиксирует микрометрический винт в требуемом положении.

Механизм индикатора смонтирован в скобе и закрывается крышкой, в прорези которой помещена шкала с пределами измерения от 0 до 0,020 мм в обе стороны. Цена каждого деления шкалы равна 0,002 мм.

Перед началом измерений необходимо проверить нуль-пункт инструмента. Для этого надо соединить контакты так, чтобы нулевой штрих барабана совместился с продольным штрихом стебля. Показание стрелки шкалы индикатора даст погрешность нуль-пункта, которая должна быть учтена с обратным знаком.

При измерении, установив деталь между контактами, вращают барабан до выхода стрелки индикатора за пределы шкалы в диапазоне от 20 мкм до 0. После этого дополнительным поворотом барабана ближайший штрих круговой шкалы барабана совмещают с продольной риской на стебле. Показание шкалы микрометра алгебраически (с учетом знака) суммируют с показанием шкалы индикатора.

Оптико-механические приборы. Для контроля режущих и измерительных инструментов сложной формы применяют инструментальные микроскопы, оптиметры и проекторы.

Инструментальные микроскопы (ГОСТ 8074-71) предназначены для линейных измерений по двум прямоугольным координатам, а также для измерений углов, в том числе элементов резьбы. Они применяются для измерения элементов профиля шаблонов, переднего и заднего углов спиральных сверл и зенкеров, среднего диаметра, угла профиля и шага метчиков, угла наклона винтовой линии сверл и разверток, угла заборного конуса метчиков и т. п.

Микроскопы выпускаются двух типов: ММИ-палый микроскоп инструментальный с наклонной окулярной головкой и БМИ - большой микроскоп инструментальный.

Инструментальный микроскоп имеет основание, на котором расположен подвижный стол, состоящий из трех частей - нижней, верхней и поворотной. Продольное перемещение нижней части стола осуществляется микрометрической головкой, а поперечный ход верхней части стола - головкой. Угловое перемещение его поворотной части на 5-6° вправо и влево производится винтом. Перемещения с помощью головок ограничиваются в пределах 25 мм. Для увеличения хода стола в продольном направлении его отводят вправо рычагом еще на 50 мм.

На основании микроскопа установлена колонна, по которой может перемещаться кронштейн, закрепляемый винтом. Тубус микроскопа расположен на кронштейне. В нижней части тубуса установлен объектив, а в верхней - головка микроскопа, состоящая из двух окуляров. Под окулярами (рис. 46,6) с помощью винта вращается стеклянная пластинка с продольными и поперечными штрихами и круговой градусной шкалой на 360°. Под окуляром расположена неподвижная пластинка со шкалой, на которой нанесено 60 делений. Каждое деление соответствует одному повороту подвижной пластинки. В окуляре видно перекрестие двух взаимно перпендикулярных пунктирных и двух сплошных линий, расположенных под углом 60°. Перекрестие является границей перемещения детали при отсчете линейных размеров и углов.

Рис. 11. Инструментальный микроскоп.

Грубая настройка на фокус достигается перемещением кронштейна микроскопа по колонне, а более точная- винтом. Окончательная настройка на фокус производится вращением кольца окуляра. Колонна микроскопа может поворачиваться на небольшой угол винтами. Для отсчета углов поворота на винтах имеются деления. Шкалы освещаются электрической лампой, установленной в тубусе.

Оптиметр - измерительный прибор с ценой деления 0,001 мм - служит для линейных измерений методом сравнения. В соответствии с ГОСТ ом 5045-75 выпускаются оптиметры вертикальные - с вертикальной осью для наружных измерений и горизонтальные - с горизонтальной осью для наружных и внутренних измерений.

В основу действия оптиметра положены законы отражения и преломления света. Оптическая схема оптиметра приведена на рис. 12,а. Свет от постороннего источника, направленный зеркалом и отраженный стеклянной пластинкой, падает на шкалу. Отраженный от шкалы луч направляется через трехгранную призму в объектив и затем отражается от зеркала в обратном направлении в окуляр, где получается изображение отраженной шкалы и указателя в виде стрелки. Так как зеркало связано с измерительным штифтом, незначительное перемещение последнего при измерении вызывает небольшой поворот зеркала, отчего происходит сдвиг изображения отраженной шкалы относительно неподвижного указателя. Это смещение, наблюдаемое в окуляре, дает возможность производить отсчет.

Шкала оптиметра имеет по 100 делений в обе стороны от нуля. Цена деления - 0,001 мм. Следовательно, предел измерения по шкале прибора составляет ±0,1 мм.

В инструментальном производстве находит применение вертикальный оптиметр (рис. 12,б). Он состоит из основания со стойкой, кронштейна, трубки, отводки, столика и зажимного винта.

Измерение деталей производят следующим образом. Блок концевых мер длины заданного размера размещают на столике и устанавливают оптиметр в нулевое положение. Грубая установка производится перемещением от руки кронштейна, а точная - подъемом столика с помощью винта.

Рис. 12. Оптическая схема оптиметра (а) и вертикальный оптиметр (б).

Столик располагают так, чтобы измерительный штифт упирался в деталь, а указатель, видимый в окуляре, точно совпадал с нулевым делением шкалы. После этого столик закрепляют винтом, блок концевых мер убирают, а на его место ставят деталь.

Если размеры детали имеют некоторое отклонение от величины блока концевых мер, то это вызовет перемещение измерительного штифта, соответствующие отклонения в положении зеркала и поднятие или опускание шкалы. Для определения размера детали необходимо к размеру блока концевых мер прибавить или отнять показания оптиметра.

Наибольшая высота измеряемой на вертикальном оптиметре детали - 180 мм.


Любое производство подразумевает использование Они необходимы и в быту: согласитесь, сложно обойтись во время ремонта без самых простых измерительных приборов, таких как линейка, рулетка, штангенциркуль и т. п. Давайте поговорим о том, какие существуют измерительные инструменты и приборы, в чем их принципиальные отличия и где применяются те или иные виды.

Общие сведения и термины

Измерительный прибор - устройство, с помощью которого получают значение физической величины в заданном диапазоне, определяемом шкалой прибора. Кроме того, такой инструмент позволяет переводить величины, делая их более понятными оператору.

Контрольный прибор используется для контроля проведения технологического процесса. К примеру, это может быть какой-либо датчик, установленный в нагревательной печи, кондиционере, отопительном оборудовании и так далее. Такой инструмент нередко определяет и свойства. В настоящее время выпускают самые различные и приборы, среди которых есть как простые, так и сложные. Некоторые нашли свое применение в одной другие же используются повсеместно. Чтобы более подробно разобраться с этим вопросом, необходимо классифицировать данный инструмент.

Аналоговые и цифровые

Контрольно-измерительные приборы и инструменты разделяются на аналоговые и цифровые. Второй вид более популярен, так как различные величины, к примеру, сила тока или напряжение, переводятся в числа и выводятся на экран. Это очень удобно и только так можно добиться высокой точности снятия показаний. Однако необходимо понимать, что в любой контрольно-измерительный цифровой прибор входит аналоговый преобразователь. Последний представляет собой датчик, который снимает показания и отправляет данные для преобразования в цифровой код.

Аналоговые измерительные и контрольные инструменты более просты и надежны, но в это же время менее точны. Причем они бывают механическими и электронными. Последние отличаются тем, что имеют в своем составе усилители и преобразователи величин. Они более предпочтительны по целому ряду причин.

Классификация по разным признакам

Измерительные инструменты и приборы принято разделять на группы в зависимости от способа предоставления информации. Так, бывают регистрирующие и показывающие инструменты. Первые характерны тем, что способны записывать показания в память. Нередко используются самопишущие приборы, которые самостоятельно распечатывают данные. Вторая группа предназначена исключительно для контроля в реальном времени, то есть во время снятия показаний оператор должен находиться около прибора. Также контрольно-измерительный инструмент классифицируют по :

  • прямого действия - осуществляется преобразование одной или нескольких величин без сравнения с одноименной величиной;
  • сравнительные - измерительный инструмент, предназначенный для сравнения измеряемой величины с уже известной.

Какие бывают приборы по форме представления показаний (аналоговые и цифровые), мы уже разобрались. Также классифицируют измерительные инструменты и приборы по другим параметрам. К примеру, бывают суммирующие и интегрирующие, стационарные и щитовые, нормируемые и ненормируемые приборы.

Измерительные слесарные инструменты

С такими приборами мы встречаемся наиболее часто. Тут важна точность работ, а так как используется механический инструмент (по большей части), то удается добиться погрешности от 0,1 до 0,005 мм. Любая недопустимая погрешность приводит к тому, что потребуется переточка или вовсе замена детали или целого узла. Именно поэтому при подгонке вала под втулку слесарь использует не линейки, а более точные инструменты.

Самое популярное слесарное измерительное оборудование - штангенциркуль. Но и такой относительно точный прибор не гарантирует 100%-ный результат. Именно поэтому опытные слесари всегда делают большое количество измерений, после чего выбирается Если требуется получить более точные показания, то используют микрометр. Он позволяет проводить измерения до сотых долей миллиметров. Однако многие думают, что данный инструмент способен измерять до микронов, что не совсем так. Да и вряд ли при проведении простых слесарных работ в домашних условиях потребуется такая точность.

Про угломеры и щупы

Нельзя не рассказать о таком популярном и эффективном инструменте, как угломер. Из названия можно понять, что он используется, если требуется точно измерить углы деталей. Состоит прибор из полудиска с намеченной шкалой. На нем имеется линейка с передвижным сектором, на который нанесена шкала нониуса. Для закрепления передвижного сектора линейки на полудиске используется стопорный винт. Сам по себе процесс измерения довольно прост. Для начала необходимо приложить измеряемую деталь одной гранью к линейке. При этом линейка сдвигается так, чтобы между гранями детали и линейками образовался равномерный просвет. После этого сектор закрепляется стопорным винтом. Первым делом снимаются показания с основной линейки, а затем с нониуса.

Нередко для измерения зазора используется щуп. Он представляет собой элементарный набор пластин, закрепленных в одной точке. Каждая пластина имеет свою толщину, которую мы знаем. Устанавливая большее или меньшее количество пластин, можно довольно точно измерить зазор. В принципе, все эти измерительные инструменты ручные, но они довольно эффективны и вряд ли предоставляется возможным их заменить. А сейчас пойдем дальше.

Немного истории

Следует отметить, рассматривая измерительные инструменты: виды их очень разнообразны. Основные приборы мы с вами уже изучили, а сейчас бы хотелось поговорить о немного и о других инструментах. К примеру, ацетометр используется для измерения крепости Данный прибор способен определять количество свободных уксусных кислот в растворе, а был изобретен Отто и использовался на протяжении 19 и 20 веков. Сам по себе ацетометр похож на градусник и состоит из стеклянной трубки 30х15см. Также имеется специальная шкала, которая и позволяет определять необходимый параметр. Тем не менее сегодня есть более продвинутые и точные методы определения химического состава жидкости.

Барометры и амперметры

А вот с данными инструментами знаком практически каждый из нас еще со школы, техникума или университета. К примеру, барометр используется для измерения атмосферного давления. Сегодня применяются жидкостные и механические барометры. Первые можно назвать профессиональными, так как их конструкция несколько сложней, а показания точней. На метеостанциях используют ртутные барометры, так как они наиболее точные и надежные. Механические варианты хороши своей простотой и надежностью, но они постепенно заменяются цифровыми приборами.

Такие инструменты и приборы для измерений, как амперметры, тоже знакомы каждому. Они нужны для измерения силы тока в амперах. Шкала современных приборов градируется по-разному: микроамперами, килоамперами, миллиамперами и т. п. Амперметры всегда стараются подключать последовательно: это необходимо для понижения сопротивления, что позволит увеличить точность снимаемых показаний.

Заключение

Вот мы и поговорили с вами о том, что такое контрольные и измерительные инструменты. Как вы видите, все друг от друга отличаются и имеют совершенно разную сферу применения. Одни используются в метеорологии, другие в машиностроении, а третьи - в химической промышленности. Тем не менее цель у них одна - измерить показания, записать их и проконтролировать качество. Для этого целесообразно использовать точные измерительные инструменты. Но этот параметр способствует и тому, что устройство становится сложнее, и процесс измерения зависит от большего количества факторов.