Момент силы. Формула момента силы

Враща́тельное движе́ние - вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна.

Кинетические характеристики:

Вращение твердого тела, как целого характеризуется углом , измеряющегося в угловых градусах или радианах, угловой скоростью (измеряется в рад/с)и угловым ускорением(единица измерения - рад/с²).

При равномерном вращении (T оборотов в секунду):

Частота вращения - число оборотов тела в единицу времени.-

Период вращения - время одного полного оборота. Период вращения T и его частота связаны соотношением.

Линейная скорость точки, находящейся на расстоянии R от оси вращения

Угловая скорость вращения тела

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) - векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы - по определению), на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Момент силы измеряется в ньютон-метрах. 1 Н·м - момент силы, который производит сила 1 Н на рычаг длиной 1 м. Сила приложена к концу рычага и направлена перпендикулярно ему.

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение. Момент импульса замкнутой системы сохраняется

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) - один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

16.Уравнение динамики вращательного движения. Момент инерции.

Основное уравнение динамики вращательного движения материальной точки - угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции.

М = E*J или E = M/J

Сравнивая полученное выражение со вторым законом Ньютона с поступательным законом, видим, что момент инерции J является мерой инертности тела во вращательном движении. Как и масса величина аддитивная.

Момент инерции - скалярная (в общем случае - тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².Обозначение: I или J.

Различают несколько моментов инерции - в зависимости от многообразия, от которого отсчитывается расстояние точек.

Свойства момента инерции:

1.Момент инерции системы равен сумме момента инерции её частей.

2.Момент инерции тела является величиной, иманентно присущей этому телу.

Момент инерции твердого тела - это велина, характеризующая распределение массы в теле и являющаяся мерой инертности тела при вращательном движении.

Формула момента инерции:

Теорема Штейнера:

Момент инерции тела относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр инерции, сложенной с величиной m*(R*R), где R - расстояние между осями.

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

Центральный момент инерции (или момент инерции относительно точки O) - это величина

.

Определение 1

Моментом силы представляется крутящий или вращательный момент, являясь при этом векторной физической величиной.

Она определяется как векторное произведение вектора силы, а также радиус-вектора, который проведен от оси вращения к точке приложения указанной силы.

Момент силы выступает характеристикой вращательного воздействия силы на твердое тело. Понятия «вращающий» и «крутящий» моменты не будут считаться при этом тождественными, поскольку в технике понятие «вращающий» момент рассматривают как внешнее, прикладываемое к объекту, усилие.

В то же время, понятие «крутящий» рассматривается в формате внутреннего усилия, возникающего в объекте под воздействием определенных приложенных нагрузок (подобным понятием оперируют при сопротивлении материалов).

Понятие момента силы

Момент силы в физике может рассматриваться в виде так называемой «вращающей силы». В СИ за единицу измерения принимают ньютон-метр. Момент силы также может называться «моментом пары сил», что отмечено в работах Архимеда над рычагами.

Замечание 1

В простых примерах, при приложении силы к рычагу в перпендикулярном отношении к нему, момент силы будет определяться в виде произведения величины указанной силы и расстояния до оси вращения рычага.

К примеру, сила в три ньютона, приложенная на двухметровом расстоянии от оси вращения рычага, создает момент, равнозначный силе в один ньютон, приложенной на 6-метровом расстоянии к рычагу. Более точно момент силы частицы определяют в формате векторного произведения:

$\vec {M}=\vec{r}\vec{F}$, где:

  • $\vec {F}$ представляет силу, воздействующая на частицу,
  • $\vec {r}$ является радиусом вектора частицы.

В физике следует понимать энергию как скалярную величину, в то время как момент силы будет считаться величиной (псевдо) векторной. Совпадение размерностей подобных величин не будет случайным: момент силы в 1 Н м, который приложен через целый оборот, совершая механическую работу, сообщает энергию в 2 $\pi$ джоулей. Математически это выглядит так:

$E = M\theta $, где:

  • $E$ представляет энергию;
  • $M$ считается вращающимся моментом;
  • $\theta $ будет углом в радианах.

Сегодня измерение момента силы осуществляют посредством задействования специальных датчиков нагрузки тензометрического, оптического и индуктивного типа.

Формулы расчета момента силы

Интересным в физике является вычисление момента силы в поле, производимого по формуле:

$\vec{M} = \vec{M_1}\vec{F}$, где:

  • $\vec{M_1}$ считается моментом рычага;
  • $\vec{F}$ представляет величину действующей силы.

Недостатком такого представления будет считаться тот факт, что оно не определяет направление момента силы, а только лишь его величину. При перпендикулярности силы вектору вектору $\vec{r}$ момент рычага будет равен расстоянию от центра до точки приложенной силы. При этом момент силы окажется максимальным:

$\vec{T}=\vec{r}\vec{F}$

При совершении силой определенного действия на каком-либо расстоянии, она совершит механическую работу. Точно также и момент силы (при выполнении действия через угловое расстояние) совершит работу.

$P = \vec {M}\omega $

В существующей международной системе измерений мощность $P$ будет измеряться в Ваттах, а непосредственно момент силы- в ньютон-метрах. При этом угловая скорость определяется в радианах в секунду.

Момент нескольких сил

Замечание 2

При воздействии на тело двух равных, а также противоположно направленных сил, не лежащих при этом на одной и той же прямой, наблюдается отсутствие пребывания этого тела в состоянии равновесия. Это объясняется тем, что результирующий момент указанных сил относительно любой из осей не имеет нулевого значения, поскольку обе представленные силы имеют направленные в одну сторону моменты (пара сил).

В ситуации, когда тело закрепляется на оси, произойдет его вращение под воздействием пары сил. Если пара сил будет приложенной в отношении свободного тела, оно в таком случае станет вращаться вокруг проходящей сквозь центр тяжести тела оси.

Момент пары сил считается одинаковым в отношении любой оси, которая перпендикулярна плоскости пары. При этом суммарный момент $М$ пары всегда будет равным произведению одной из сил $F$ на расстояние $l$ между силами (плечо пары) в независимости от типов отрезков, на которые оно разделяет положение оси.

$M={FL_1+FL-2} = F{L_1+L_2}=FL$

В ситуации, когда равнодействующая момента нескольких сил равнозначна нулю, он будет считаться одинаковым относительно всех параллельных друг другу осей. По этой причине воздействие на тело всех этих сил возможно заменить действием всего лишь одной пары сил с таким же моментом.

Моментом силы относительно оси называется момент проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с этой плоскостью

Момент относительно оси положителен, если сила стремится вращать плоскость перпендикулярную оси против часовой стрелки, если смотреть навстречу оси.

Момент силы относительно оси равен 0 в двух случаях:

    Если сила параллельна оси

    Если сила пересекает ось

Если линия действия и ось лежат в одной плоскости, то момент силы относительно оси равен 0.

27. Связь между моментом силы относительно оси и векторным моментом силы относительно точки.

Mz(F)=Mo(F)*cosαМомент силы, относительно оси равен прекции вектора момента сил, относительно точки оси на эту ось.

28. Основная теорема статики о приведении системы сил к заданному центру (теорема Пуансо). Главный вектор и главный момент системы сил.

Всякую пространственную систему сил в общем случае можно заменить эквивалентной системой, состоящей из одной силы, прило­женной в какой-либо точке тела (центре приведения) и равной глав­ному вектору данной системы сил, и одной пары сил, момент которой равен главному моменту всех сил относительно выбранного центра приведения.

Главным вектором системы сил называется вектор R , равный векторной сумме этих сил:

R = F 1 + F 2 + ... + F n = F i .

Для плоской системы сил ее главный вектор лежит в плоскости действия этих сил.

Главным моментом системы сил относительно центра O называется вектор L O , равный сумме векторных моментов этих сил относительно точки О:

L O = M O (F 1) + M O (F 2) + ... + M O (F n) = M O (F i).

Вектор R не зависит от выбора центра О, а вектор L O при изменении положения центра О может в общем случае изменяться.

Теорема Пуансо: Произвольную пространственную систему сил можно заменить одной силой главным вектором системы сил и парой сил с главным моментом не нарушая состояния твердого тела. Главный вектор представляет собой геометрическую сумму всех сил действующих на твердое тело и расположен в плоскости действия сил. Главный вектор рассматривается через его проекции на оси координат.

Чтобы привести силы к заданному центру приложенному в некоторой точке твердого тела необходимо: 1) перенести параллельно силу самой себе к заданному центру не изменяя модуля силы; 2) в заданном центре приложить пару сил, векторный момент которой равен векторному моменту перенесенной силы относительного нового центра, эту пару называют присоединенной парой.

Зависимость главного момента от выбора центра приведения. Главный момент относительно нового центра приведения равен геометрической сумме главного момента относительно старого центра приведения и векторного произведения радиуса-вектора, соединяющего новый центр приведения со старым, на главный вектор.

29 Частные случаи приведения пространственной системы сил

Значения главного вектора и главного момента

Результат приведения

Система сил приводится к паре сил, момент которой равен главному моменту (главный момент системы сил не зависит от выбора центра приведения О).

Система сил приводится к равнодействующей, равной , проходящей через центр О.

Система сил приводится к равнодействующей , равной главному векторуи параллельной ему и отстоит от него на расстоянии. Положение линии действия равнодействующей должно быть таким, чтобы направление ее момента относительно центра приведения О совпадало с направлениемотносительно центра О.

, причем векторы ине перпендикулярны

Система сил приводится к динаме (силовому винту) – совокупности силы и пары сил, лежащей в плоскости, перпендикулярной к этой силе.

Система сил, приложенных к твердому телу, является уравновешивающейся.

30. Приведение к динаме. Динамой в механике называют такую совокупность силыи пары сил () действующих на твердое тело, у которой сила перпендикулярна плоскости действия пары сил. Используя векторный моментпары сил, можно также определить динаму как совокупность силы и пары, у которы сила параллельна векторному моменту пары сил.

Уравнение центральной винтовой оси Предположим, что в центре приведения, принятом за начало координат, получены главный вектор с проекциями на оси координат и главный момент с проекциями При приведении системы сил к центру приведения О 1 (рис. 30) получается динама с главным вектором и главным моментом , Векторы и как образующие линаму. параллельны и поэтому могут отличаться только скалярным множителем k 0. Имеем, так как .Главные моменты и , удовлетворяют соотношению

Моментом силы относительно произвольного центра в плоскости действия силы, называется произведение модуля силы на плечо.

Плечо - кратчайшее расстояние от центра О до линии действия силы, но не до точки приложения силы, т.к. сила-скользящий вектор.

Знак момента:

По часовой-минус, против часовой-плюс;

Момент силы можно выразить как вектор. Это перпендикуляр к плоскости по правилу Буравчика.

Если в плоскости расположены несколько сил или система сил, то алгебраическая сумма их моментов даст нам главный момент системы сил.

Рассмотрим момент силы относительно оси, вычислим момент силы относительно оси Z;

Спроецируем F на XY;

F xy =Fcosα = ab

m 0 (F xy)=m z (F), то есть m z =F xy * h = Fcosα * h

Момент силы относительно оси равен моменту ее проекции на плоскость перпендикулярную оси, взятому на пересечении осей и плоскости

Если сила параллельна оси или пересекает ее, то m z (F)=0

Выражение момента силы в виде векторного выражения

Проведем r а в точку A. Рассмотрим OA x F.

Это третий вектор m o , перпендикулярный плоскости. Модуль векторного произведения можно вычислить с помощью удвоенной площади заштрихованного треугольника.

Аналитическое выражение силы относительно координатных осей.

Предположим, что с точкой О связаны оси Y и Z, X с единичными векторами i, j, k Учитывая, что:

r x =X * Fx ; r y =Y * F y ; r z =Z * F y получим: m o (F)=x =

Раскроем определитель и получим:

m x =YF z - ZF y

m y =ZF x - XF z

m z =XF y - YF x

Эти формулы дают возможность вычислить проекцию вектор-момента на оси, а потом и сам вектор-момент.

Теорема Вариньона о моменте равнодействующей

Если система сил имеет равнодействующую, то её момент относительно любого центра равен алгебраической сумме моментов всех сил относительно этой точки

Если приложить Q= -R , то система (Q,F 1 … F n) будет равен уравновешиваться.

Сумма моментов относительно любого центра будет равен нулю.

Аналитическое условие равновесия плоской системы сил

Это плоская система сил, линии действия которых расположены в одной плоскости

Цель расчета задач данного типа - определение реакций внешних связей. Для этого используются основные уравнения в плоской системе сил.

Могут использоваться 2 или 3 уравнения моментов.

Пример

Составим уравнение суммы всех сил на ось X и Y.

Лекция 3. Закон сохранения момента импульса.

Момент силы. Момент импульса материальной точки и механической системы. Уравнение моментов механической системы. Закон сохранения момента импульса механической системы.

Математические сведения.

Векторным произведением двух (ненулевых) векторов и называется вектор , который в декартовой системе координат (с ортами , , ) определяется по формуле

.

Величина (площадь прямоугольника на векторах и ).

Свойства векторного произведения.

1) Вектор направлен перпендикулярно к плоскости векторов и . Поэтому для любого вектора , лежащего в плоскости (линейно независимых) векторов и (т.е. ), получаем . Следовательно, если два ненулевых вектора и параллельны , то .

2) Производная по времени от векторного произведения – это вектор .

Действительно, (базисные векторы , , - постоянные)

Вектор момента импульса

Вектором момента импульса относительно точки О называется вектор

где - радиус-вектор из точки О, - вектор импульса точки. Вектор направлен перпендикулярно к плоскости векторов и . Точку О иногда называют полюсом . Найдем производную от вектора момента импульса по времени

.

Первое слагаемое в правой части: . Так как в инерциальной системе отсчета по второму закону Ньютона (в импульсной форме) , то второе слагаемое имеет вид .

Величина называется вектором момента силы относительно точки О.

Окончательно получаем:

производная от вектора момента импульса относительно точки равна моменту действующих сил относительно этой точки.

Свойства вектора момента силы.

.

3) Момент суммы сил равен сумме моментов каждой из сил .

4) Сумма моментов сил относительно точки

при переходе к другой точке О 1 , при которой изменится по правилу

.

Следовательно, момент сил не изменится, если .

5) Пусть , где , тогда .

Следовательно, если две одинаковые силы лежат на одной прямой , то их моменты одинаковые . Эта прямая называется линией действия силы . Длина вектора называется плечом силы относительно точки О.

Момент силы относительно оси.

Как следует из определения момент силы, координаты вектора моменты силы относительно координатных осей определяются формулами

, , .

Рассмотрим метод нахождения момента силы относительно некоторой оси z. Для этого надо рассмотреть вектор момента силы относительно некоторой точки О на этой оси и найти проекцию вектора момента силы на эту ось.

1) Проекция вектора момента силы на ось z не зависит от выбора точки О.

Возьмем на оси z две разные точки О 1 и О 2 и найдем моменты силы F относительно этих точек.

Разность векторов направлена перпендикулярно вектору , лежащему на оси z. Следовательно, если рассмотреть орт оси z – вектор , то проекции на ось z равны между собой

Поэтому, момент силы относительно оси z определен однозначно.

Следствие . Если момент силы относительно некоторой точки на оси равен нулю, то равен нулю момент силы относительно этой оси.

2) Если вектор силы параллелен оси z, то момент силы относительно оси равен нулю .

Действительно вектор момента силы относительно любой точки на оси должен быть перпендикулярен вектору силы, поэтому он также перпендикулярен и оси, параллельной этому вектору. Поэтому проекция вектора момента силы на эту ось будет равна нулю. Следовательно, если разложение вектора силы на компоненту параллельную оси, и компоненту , перпендикулярную оси, то

3) Если вектор силы и ось не параллельны, но лежат в одной плоскости, то момент силы относительно оси равен нулю. Действительно, в этом случае вектор момента силы относительно любой точки на оси направлен перпендикулярно этой плоскости (т.к. вектор тоже лежит в этой плоскости). Можно сказать и иначе. Если рассмотреть точку пресечения линии действия силы и прямой z, то момент силы относительно этой точки равен нулю, поэтому и момент силы относительно оси равен нулю.

Итак, чтобы найти момент силы относительно оси z, надо:

1) найти проекцию силы на любую плоскость p перпендикулярную этой оси и указать точку О - точку пересечения этой плоскости с осью z;

Похожая информация.