Что такое магнитное поле Земли? Земля — большой магнит Проект земля большой магнит.

Мне осталось рассказать вам о последнем из намеченных свойств Земли – о ее магнитном поле. Это явление люди тоже заметили довольно давно. Сначала находили какие‑то камни, которые притягивались один к другому и неодолимо влекли к себе железо. Потом обратили внимание и на то, что маленькая стрелочка из магнитного железа, насаженная на иглу, всегда смотрит одним своим концом в одну и ту же сторону, в направлении путеводной Полярной звезды. Даже когда небо бывало закрыто тучами.

Мудрецы считали, что там, возле Малой Медведицы, находится на небе большой магнитный камень. К нему‑то и тянутся все магниты Земли. Трудно сегодня сказать, кто первым надумал использовать магнит для указания пути. Может быть, финикийские мореплаватели, а может, китайцы. В Европу компас попал довольно поздно. Попал вместе с арабской легендой о высоких горах из железного камня, что стоят на Крайнем Севере. Будто эти магнитные горы притягивают к себе корабли и вырывают из них все гвозди.

И хотя сила магнита не без основания казалась довольно таинственной, компас пришелся морякам по вкусу.

В конце XVI века английский строитель компасов Роберт Норман описал свойства магнитной стрелки. Он обнаружил наклонение ее к горизонту и возражал тем, кто по‑прежнему верил, что «магнитный камень», притягивающий магниты Земли, находится на небе. Басни о магнитных горах его тоже не удовлетворяли. В конце концов Норман ограничился тем, что описал устройство «инклинаториума» – то есть стрелки, вращающейся вокруг горизонтальной оси в направлении магнитного меридиана.

В те времена не меньше моряков и путешественников свойствами магнитов интересовались медики. Они прописывали толченый магнит как слабительное. Представляете, какое нужно было иметь здоровье, чтобы выдержать подобное лечение.

Доктор Гильберт, или сэр Уильям Джильберт Колчестерский, как называли в то время англичане лейб‑медика Елизаветы – королевы Англии, не зря занимался магнитами. Семидесятилетнюю королеву не могли не интересовать проблемы сохранения, если не молодости и красоты, то хотя бы здоровья.

Гильберт был умен, учен и весьма осторожен. В 1600 году из‑под печатного пресса вышел его обширный труд: «О магните, магнитных телах и о большом магните – Земле». Шесть книг, написанных прекрасной латынью и снабженных гравированными рисунками. Бессмертный труд.

«Гильберт будет жить, пока магнит не перестанет притягивать»

Елизавета вошла и тихо опустилась в приготовленное для нее кресло возле камина. Вечером особенно заметно, как она немолода. Кажется, что веснушки и темные пятна с возрастом расплылись, усугубив общий нездоровый фон и без того не слишком привлекательного ее лица. Рыжеватые, густо выбеленные сединой волосы, перевитые жемчугом, поредели. Правда, голова ее все еще высоко поднята. Но не заслуга ли это воротника? И не тяжелое ли платье, расшитое золотом, не дает согнуться стану этой пожилой и усталой женщины? Впрочем, глаза у королевы зорки и светятся любопытством. Она машет платком, давая знак начинать…

Лейб‑медик берет со стола каменный шар.

– Ваше величество, я не намерен прибегать к голым и утомительным умозаключениям или измышлениям. Мои аргументы, как вы легко можете видеть, основаны только на опыте, разуме и демонстрации. Этот шар, выточенный с немалыми расходами и трудами из магнитного камня, я назвал «тереллой», что означает «маленькая земля», «земелька». Я подношу к ней магнитную стрелку. Смотрите, ваше величество. Я надеюсь, что все леди и джентльмены ясно видят, как один ее конец притягивается к одному полюсу тереллы, а другой к другому. Не так ли ведут себя и стрелки компасов, установленные иждивением адмиралтейства на кораблях флота ее величества? Если не так, то боюсь, что немногие корабли, посланные в неведомые страны, воротятся в свои порты… Но не доказывает ли это, что причина притяжения скрывается не в небе? Не является ли вся наша Земля неким «большим магнитом»?

Придворные переговариваются: «Сэру Вильяму не откажешь в проницательности и ловкости в доказательствах. А как он срезал этого надутого индюка лорда Н., браво! Давно пора. Пожалуй, с этим лекарем опасно спорить…» Между тем Гильберт продолжает:

– Век мудрого правления вашего величества даровал человечеству неисчислимые богатства; открыт Новый Свет, изобретено книгопечатание, телескоп, компас… Эти открытия стали источником нового могущества, открыли новые горизонты и в то же время предложили человеческому гению новые задачи. Здесь поможет только опыт!..

Гильберт стал водить магнитной стрелкой по поверхности тереллы.

– Взгляните, ваше величество, на разных удалениях от полюсов магнитная стрелка по‑разному отклоняется от своего горизонтального положения. Ее наклонение уменьшается у экватора, и, напротив, на магнитных полюсах тереллы она стремится стать вертикально…

Эти слова заставили двух адмиралов флота протиснуться к столу. Нельзя ли использовать эту способность магнитной стрелки, чтобы решить проблему определения местонахождения корабля в открытом море?..

А Гильберт уже кладет небольшие магнитные стерженьки в легкие кораблики и пускает их плавать в узкое корыто с водой. Всплескивают руками дамы, наблюдая, как устремляются навстречу суденышки со стерженьками, повернутыми друг к другу разноименными полюсами. И как расходятся те, на которых стержни выставлены вперед одноименными концами. Присутствующие в восторге. Королева улыбалась.

– Если ваше величество соблаговолит согласиться с выводом, что Земля – магнит, то остается сделать один шаг и для допущения, что и другие небесные тела, в особенности Луна и Солнце, наделены такими же магнитными силами. А коль скоро так, то не причина ли приливов и отливов, не причина ли движения небесных тел заключается в магнетизме?

Вряд ли кто‑нибудь из присутствующих мог понять всю глубину высказанного Гильбертом предположения.

Лорд‑канцлер снял с пальца перстень с крупным бриллиантом.

– Прошу вас, сэр Вильям, проверьте, не пропадет ли сила вашего магнита, если положить рядом этот камень? Кажется, существует мнение, что алмазы уничтожают притяжение…

– Милорд, – отвечает врач, – боюсь, что одного камня, даже с вашей руки, недостаточно, чтобы проверить это утверждение. А у меня таких драгоценностей нет.

Взгляды присутствующих обратились к королеве. Поколебавшись, Елизавета приказала принести несколько крупных камней из сокровищницы. Королева была скуповата. Но ей всегда доставляло удовольствие любоваться игрой своих бриллиантов. Тут было несколько возможностей: похвастаться перед придворными, посмотреть на бриллианты и, конечно, не лишено интереса убедиться в том, не уничтожат ли драгоценные камни силу магнита.

Гильберт обложил магнит семнадцатью крупными алмазами и поднес к нему другой магнит. Все затаили дыхание. А вдруг камни исчезнут или испортятся? Но раздался щелчок, и оба стержня слиплись. Присутствующие захлопали в ладоши.

– Ваше величество может убедиться, что и это мнение древних оказывается ложным. Можно уничтожить, конечно, намагниченность железной стрелки. Для этого ее следует нагреть…

Королева зевнула. Ученая беседа утомила всех.

Врач тоже устал. Не доверяя слугам, он сам собрал свои приборы и откланялся почти незамеченный.

«Из доказательства наилучшее – есть доказательство опытом. – Эти слова напишет Бэкон несколько лет спустя после описанного вечера и тут же добавит: – Однако нынешние опыты бессмысленны. Экспериментаторы скитаются без пути, мало продвигаясь вперед, а если найдется серьезно отдающийся науке, то и он роется в одном каком‑нибудь опыте, как Гильберт в магнетизме». Странное высказывание для того, кто во главу угла всей новой науки требовал поставить экспериментальный метод. Впрочем, сегодня нам трудно понять, насколько принципиальные побуждения двигали непоследовательным Бэконом в оценке трудов лейб‑медика Елизаветы.

Рудоподъемник в шахте. Со старинной гравюры.

Зато совсем иначе звучит отзыв другого современника Гильберта итальянского ученого Галилео Галилея: «Величайшей похвалы заслуживает Гильберт… за то, что он произвел такое количество новых и точных наблюдений. И тем посрамлены пустые и лживые авторы, которые пишут не только о том, чего сами не знают, но и передают все то, что пришло им от невежд и глупцов».

Жаль, что сам Гильберт не узнал об этой блестящей оценке. В марте 1603 года умерла королева, а несколько месяцев спустя за нею последовал и ее врач. Перед смертью он завещал все свою научное имущество Лондонскому обществу медиков. Но страшный пожар уничтожил дом и приборы Гильберта. Осталось лишь сочинение «О магните…» да имя. Много это или мало?

Пожалуй, лучше других на этот вопрос ответил английский поэт Джон Драйден, написавший: «Гильберт будет жить, пока магнит не перестанет притягивать».

А какой памятник мы, потомки, поставили великому созидателю науки о магнетизме Земли? В память о нем единица магнитодвижущей силы в системе единиц СГС носит сегодня название гильберт!

«О сходстве электрической силы с магнитною»

Гильберт доказал, что Земля – магнит. Он изучил поведение магнитной стрелки возле выточенной из магнитного камня тереллы и показал на своей модели причину магнитных наклонений. В двух точках шара стрелки Роберта Нормана становились торчком. Стрелки лучших компасов, помещенные в те же точки, бессильно крутились, не способные выбрать никого направления.

Как же выглядит Земля‑магнит? Какую картину имеет ее магнитное поле? Ведь мы, люди, его не видим, не слышим и вообще никак не ощущаем… Правда, есть один очень древний опыт. Он такой старый, что даже неизвестно, кто его проделал первым. Делается он так. На обыкновенный линейный магнит вы кладете листок плотной бумаги и насыпаете на него железные опилки. Потом стучите пальцем по листу и опилки послушно распределяются вдоль силовых линий магнитного поля, показывая их направление. Простой опыт, но исключительно наглядный. Каждая крупинка железа, попав в магнитное поле, сразу же намагничивается, становится как бы маленькой компасной стрелкой. Как и полагается «нормальному» магниту, она тут же сцепляется своим северным концом с южным полюсом соседнего магнитика, тот со следующим и так далее, располагаясь по направлению действия магнитных сил.

У полюсов, где опилки налипли гуще, магнитное поле сильнее. А там, где опилки распределились пореже, и поле слабее. Так же, как у линейного магнита, выглядит магнитное поле и нашей Земли.

«А не спрятан ли внутри планеты, где‑нибудь в центре ее, этакий „магнитный столб“, величиной с вавилонскую башню?» – рассуждали знатоки, пораженные небывалой картиной. Долгое время никто не мог придумать ничего лучшего для объяснения. Но тут стали накапливаться факты совсем из другой области, но тоже связанные с магнитом.

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №4 г. Жирновска»

Жирновского района Волгоградской области.

Почему Земля – магнит?»

Выполнили: ученики 8»А» класса

Зюбина Е., Руденко А.,

Гаранин С., Полуосьмак Н.

Руководитель: Немухина Е.С.

учитель физики

МОУ «СОШ №4 г. Жирновска»

2012 г.

Введение.

Вопрос «Почему Земля – магнит?» - очень сложный. Ответить на него пытаются многие ученые. Мы тоже заинтересовались этим вопросом. Конечно с налету, эдаким лихим наскоком, тайну природы не раскроешь.

Цель работы:

Узнать почему Земля магнит.

Задачи исследования:

    Систематизировать научную литературу посвященную данной теме.

    Изучить магнитное поле и магнитные линии.

    Познакомиться со свойствами магнита.

    Ответить на вопрос: «Почему Земля – магнит?»

1. Что же такое магнитное поле и магнитные линии? Магнитное поле существует вокруг любого проводника с током, т.е. вокруг движущихся электрических зарядов. Электрический ток и магнитное поле не отделимы друг от друга. Таким образом, вокруг неподвижных электрических зарядов существует только электрическое поле, вокруг движущихся зарядов, т.е. электрического тока, существует и электрическое и магнитное поле. Магнитное поле появляется вокруг проводника, когда в последнем возникает ток, поэтому ток следует рассматривать как источник магнитного поля. В этом смысле надо понимать выражения «магнитное поле тока» или «магнитно поле, созданное током». Магнитное поле – это пространство вокруг магнита. Именно магнитное поле заставляет двигаться магнитную стрелку.

Магнитные линии – это линии, вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок.

2.С глубокой древности известно, что магнитная стрелка, свободно вращающаяся вокруг вертикальной оси, всегда устанавливается в даном месте Земли в определенном направлении. Этот факт объясняется тем, что вокруг Земли существует магнитное поле и магнитная стрелка устанавливается вдоль его магнитных линий. На этом основано применение компаса.

Чтобы это проверить мы провели опыт: для начала мы приложили иголку к магниту, затем укрепили иголку-магнит на обыкновенной пробке и опустили в чашку с водой. Иголка повернулась так, что одним концом смотрит на север, а другим на юг. Мы попробовали повернуть иголку-магнит наоборот, но она тут, же вернулась в прежнее положение. Известно, что магнитный компас, которым пользовались в давние времена моряки очень похож на тот, что мы сделали сами, но это был просто магнит на поплавке.

Мы решили проверить можно ли отделить северный магнитный полюс от южного. Для этого мы преломили иголку-магнит пополам. Затем на каждую половинку мы одели поплавок и поочереди опустили в чашку с водой. Сначала мы опустили ту половину иглы которую мы хотели лишить южного полюса, оставив ей только северный он и смотрит на север. А другой конец половинки – тот что жил прежде по середине иглы – на юг. Таким образом, мы убедились, что вторая половинка, которой мы хотели оставить только южный полюс «отрастила» себе новый северный полюс. Из этого опыта следует что, магнит восстанавливает взамен утраченного любой полюс и притом мгновенно.

Чтобы докопаться до истины и ответить на вопрос «Почему Земля – магнит», мы рассмотрели строение магнита. Итак, предположим что всякий магнит состоит из множества микроскопических магнитиков, северные полюсы которого смотрят в одну сторону, а южные в другую и ученым удалось доказать что это именно так. Оказывается, крошечные магнитики – их называют ДОМЕНАМИ – есть даже в ненамагниченном железе! Но пока железо не намагнитили, его домены располагаются «кто в лес, кто по дрова». А вот когда железо намагничивают, все его домены поворачиваются, словно миниатюрные стрелочки, и начинают смотреть своими северными полюсами в одну сторону, а южными в другую.

Интересно, а можно ли размагнитить магнит? Мы решили попробовать это сделать. Нагрев иголку-магнит в пламени кухонной горелки, а затем, дав ей остыть, мы опустили иголку в железные опилки и заметили, что опилки больше не притягиваются к иголке. Почему? Все очень просто, известно, что все - на свете вещества состоят из атомов. Разумеется, из атомов состоит и железо. Причем атомы железа в домене подчинены такой же «железной дисциплине», как и сами домены в магните. Но даже в самом твердом теле атомы непрерывно колеблются «приплясывают» на месте. Чем сильнее нагрето тело, тем быстрее и беспорядочнее это приплясывание. Раскалив намагниченную иголку, мы довели приплясывание атомов железа до бешеной пляски. Понятно, что железная дисциплина атомов в доменах нарушилась – домены исчезли, а вместе с ними и намагниченность. Но когда иголка остыла, домены в ней появились снова, но теперь они смотрят куда попало. Чтобы опять заставить их повернуться в одну сторону, нужно заново намагничивать иголку.

3.А как же выглядит магнитное поле земли? Конечно, картонку с железными опилками на земной шар не положишь, но о магнитном поле Земли можно судить по поведению двух стрелок. Одна стрелка – обычного компаса, она способна поворачиваться только влево-вправо. Ее дополняет магнитная стрелка, которая способна поворачиваться вверх и вниз - ее называют СТРЕЛКОЙ НАКЛЕНЕНИЯ. Представив себе что мы, облазив с этими двумя стрелками весь Земной шар, а также облетав его со всех сторон и на разных высотах в космическом корабле, мы нарисовали магнитные силовые линии Земли и увидели, как выглядит ее магнитное поле.

Во время этого путешествия мы бы обнаружили на Земле две замечательные точки: стрелка наклонения здесь становится вертикально и показывает острием вниз, а стрелка обычного компаса вообще ничего не показывает – она крутится, как ей вздумается. Эти две точки - магнитные полюсы Земли.

Говорят, что магнитное поле Земли кувыркается. Почему? Нам очень повезло – в наши дни геофизики, то есть физики изучающие Землю, умеют выстукивать ее, просвечивать и взвешивать не хуже чем врач больного. И вот многие из них предполагают, что в глубинах Земного шара, особенно в сердцевине Земли – ее ядре, действительно много богатых железом веществ и даже чистого железа! Правда в глубинах нашей планеты ужасно жарко – на очень большой глубине температура такая высокая, что железо там находится в расплавленном состоянии, словно в доменной печи.

«Но разве расплавленное железо может намагнититься? – удивились мы, - Мы просто раскалили иголку, и, то она потеряла магнитные свойства!»

А что если в таких необычных условиях магнитные свойства у железа тоже необычные? Вполне возможно (ученые это допускают), что оно все таки способно намагничиваться, несмотря на адскую жару. Но если даже твердое железное ядро намагничено, все равно сейчас можно уверенно сказать не железный магнит главный виновник того что у Земного шара есть магнитное поле.

Ученые пока считают этот вопрос одной из самых больших научных загадок. Для создания магнитного поля необходимо либо намагниченное тело, либо электрический ток. Много гипотез было предложено и отвергнуто. Наиболее правильный ответ в настоящее время таков: магнитное поле Земли создается электрическими токами в ядре; эти токи, вероятно, вырабатываются и поддерживаются механизмом, подобным самовозбуждающемуся динамо. Теория динамо впервые была предложена в 1919г. английским ученым Джеромом Лармором. А в 1945г. советский физик Яков Ильич Френкель выдвинул гипотезу земного динамо применительно к геомагнитному полю, считая главной причиной наличие жидкого внешнего ядра. Температура внутри ядра должна быть несколько выше, чем на его периферии, за счет радиоактивного распада неустойчивых элементов. Холодные массы при этом устремляются к центру ядра, горячие – из центра ядра движутся им навстречу. Земля вращается, скорость движения масс на периферии ядра больше, чем в его глубинах. Поэтому движущиеся из центра элементы жидкости тормозят вращение периферийных слоев ядра, а встречные потоки, наоборот, ускоряют внутренние слои. Тогда внутренняя часть ядра вращается быстрей внешней и играет роль ротора (вращающейся части) генератора, в то время как внешняя – роль статора (неподвижной части). В соответствии с расчетами в такой системе оказываются возможными самовозбуждение и появление электрических токов. Именно эти токи и создают магнитное поле Земли. Сторонники этой гипотезы считают, что правильнее было бы назвать Землю большой динамо-машиной, чем большим магнитом.

Заключение.

Мы постарались выполнить свой план действий. Но чтобы доказать, что магнитное поле у Земли появилось именно так как мы предположили, необходимо точно выяснить, что представляют собой потоки жидкого железа в глубинах Земли, как они возникают и как текут. Кроме того нужно сравнить магнитные свойства Земли с магнитными свойствами её сестер – других планет Солнечной системы, и узнать, что у них внутри – есть ли жидкое ядро, какие потоки возникают в нем из-за вращения планет? Словом дел еще невпроворот. Но может быть когда-нибудь мы сможем отгадать вековую тайну природы: почему Земля – магнит?

Литература.

1. Учебник физики 8 класс, Перышкин А. В.. 2008 г.

2. Почему Земля магнит? , М. Константиновский, 1979 г.

3. Сайт Pochemy . net Почему Земля магнит?.

4. Земля – большой магнит. Все о планете Земля. www .vseozemle .ru .

Намагниченный брусок имеет два магнитных полюса - северный и южный. Магнитное поле такого бруска является дипольным, то есть полем с двумя полюсами ("ди" означает два) . Форму его можно увидеть с помощью железных опилок. Силовые линии этого поля проходят так, как ориентируются опилки. Каждая опилка является стрелкой компаса. Она ориентируется вдоль магнитного поля, по касательной силовой линии магнитного поля.

Земля тоже намагничена. Она имеет свое магнитное поле с двумя полюсами, вокруг глобуса можно создать такое магнитное поле, если внутрь полюса поместить намагниченный брусок. Но как? Вначале его надо разместить вдоль оси вращения Земли. Половина бруска в северном полушарии, а другая половина в южном.

Южный магнитный полюс надо направить к северному географическому полюсу. Тогда северный магнитный полюс бруска будет совпадать с южным географическим полюсом.

После этого надо брусок отклонить от оси вращения Земли на 11°. Надо отклонить его так, чтобы он своим южным магнитным полюсом упирался в город Туле (Гренландия). Тогда магнитное поле бруска, "привязанное" таким образом к Земле, будет похоже на магнитное поле Земли.

Магнитное поле земного диполя одинаковое со всех сторон: с дневной, ночной, утренней и вечерней. Оно не зависит от положения Солнца. Над магнитным экватором оно проходит горизонтально. Над магнитными полюсами силовые линии магнитного поля Земли направлены вертикально. Принято считать, что магнитное поле направлено от северного магнитного полюса к южному. Значит, силовые линии магнитного поля Земли направлены в южном полушарии снизу вверх, а в северном- сверху вниз. Силовые линии, выходящие из северного магнитного полюса (в южном полушарии), входят в южный магнитный полюс в северном полушарии.

Чтобы не было путаницы из-за того, что северный магнитный полюс находится в южном полушарии, а южный- в северном, договорились называть магнитный полюс в северном полушарии северным геомагнитным полюсом. Стрелка компаса поворачивается на север своим северным магнитным полюсом. Это и происходит потому, что на севере находится южный магнитный полюс. МЫ будем придерживаться терминологии, принятой учеными. Будем считать, что северный геомагнитный полюс находится в северном полушарии (вблизи Туле). Но будем помнить, что там на самом деле южный магнитный полюс. От этого зависит направление силовых линий магнитного поля.

Действительно ли магнитное поле Земли является полем диполя? В принципе да, а в деталях - нет. Эти детали тем не менее очень важны. Их удалось установить только сравнительно недавно, когда космические аппараты позволили измерять магнитное поле далеко за пределами Земли. Эти измерения позволили установить, какова на самом деле форма магнитного поля Земли в деталях.

Оказалось, что магнитное поле Земли со стороны Солнца не такое, как с противоположной (ночной) стороны.

В области, примыкающей к Земле, магнитное поле является дипольным и не зависит от положения и даже наличия Солнца. В более удаленной от Земли области, на расстояниях, больших чем три радиуса Земли, различие в магнитных полях очень существенное. Оно состоит в следующем.

Магнитное поле диполя характеризуется "воронками" над магнитными полями. У реального магнитного поля Земли эти воронки находятся не над магнитными полюсами, а смещаются в сторону экватора примерно на 1000 км от полюсов. Кроме того, форма магнитных силовых линий на дневной стороне очень сильно отличается от таковой на ночной стороне. Поскольку это зависит от положения Солнца, то именно Солнце "виновато" в этом различии. Как понять суть этого влияния- влияния Солнца на форму магнитного поля Земли?

Солнечный ветер и магнитосфера Земли

Как Солнце может подействовать на магнитное поле Земли? Совершенно очевидно, что оно не может действовать на магнитное поле своим притяжением. Не может действовать на магнитное поле и солнечный свет, а также рентгеновское, инфракрасное и гамма-излучение. То же самое относится и к радиоволнам, которые излучает Солнце. Они тоже должны быть исключены из тех факторов, от которых зависит форма магнитного поля Земли. Что же остается? Заряженные частицы, которые выбрасываются из атмосферы Солнца и уходят в межпланетное пространство. Мы уже говорили об этих частицах. Они обладают различными энергиями, а значит и разными скоростями. Заряженные частицы с небольшими скоростями, которые непрерывно исходят из Солнца во все страны, называют солнечным ветром. Потоки высокоэнергичных заряженных частиц выбрасываются из солнечной атмосферы время от времени. Они обладают большими скоростями и достигают Земли быстрее частиц солнечного ветра.

Можно считать, что агент, который определяет форму магнитного поля Земли, а точнее деформацию магнитного диполя Земли, найден. Это солнечные заряженные частицы. Остается выяснить, как заряженные частицы это делают. Чтобы в этом разобраться, надо вспомнить, как заряженные частицы взаимодействуют с магнитным полем.

Если заряженная частица движется в магнитное поле, то ее движение зависит от этого поля. Исключением является только один случай - когда заряженная частица движется строго вдоль силовой линии магнитного поля. В этом случае заряженная частица не чувствует наличия магнитного поля, она движется так, как будто магнитного поля и вовсе нет. Если заряженная частица движется поперек магнитного поля, то траектория меняется: вместо прямой линии до вхождения в поле она становится окружностью. Чем сильнее магнитное поле, тем меньше эта окружность (у той же частицы) . Но с другой стороны, чем больше энергия летящей частицы, тем труднее магнитному полю согнуть ее траекторию в маленькую окружность.

Имеется некоторое условие баланса. Для того, чтобы изменить траекторию заряженных частиц с определенной энергией, магнитное поле должно иметь определенную величину и быть направлено перпендикулярно движению частиц. Если это условие выполняется, то заряженные частицы начинают вращаться вокруг силовых линий. Скорость их вращения и радиусы окружностей, по которым они вращаются, зависят от величины магнитного поля и энергии частиц. Положительно заряженные частицы вращаются в одну сторону, а отрицательно заряженные- в противоположную. Солнечные заряженные частицы подходят к магнитному полю Земли под разными углами: и продольно, и перпендикулярно, и косо. Те из частиц, которые подходят вдоль силовых линий (над магнитными полюсами), должны беспрепятственно проникать внутрь магнитной оболочки Земли (магнитосферы) . Те частицы, которые подходят к силовым линиям перпендикулярно, далеко вглубь магнитосферы не пройдут. Их траектории закручиваются вокруг силовой линии магнитного поля. Что же будет с частицами, которые косо падают на магнитное поле? Это тем более важно знать, что таких частиц большинство.

Когда заряженная частица движется под некоторым углом (но не прямым) к силовой линии магнитного поля, то это ее движение можно разложить на два: вдоль поля и поперек него. Собственно, в данном случае мы вектор скорости частицы раскладываем на составляющие- вдоль магнитного поля и поперек него. Движение такой частицы в магнитном поле станет движением по спирали. Частица будет вращаться вокруг силовой линии и одновременно смещаться вдоль силовой линии. Траектория частицы будет иметь форму спирали.

Радиус этой спирали и ее шаг будут неизменными в том случае, если будут оставаться неизменными энергия частицы и форма и напряженность магнитного поля. Это значит, что силовые линии магнитного поля должны быть прямыми, расстояние между которыми неизменно в направлении движения частицы. Это условие однородности магнитного поля. Но этот случай однородного магнитного поля для нас мало интересен. Ведь магнитное поле Земли неоднородно. Как в этом случае будут двигаться частицы?

Если силовые линии магнитного поля сходятся, то есть частица, двигаясь по спирали, продвигается во все более сильное магнитное поле, то ее продвижение в это поле постепенно замедляется. Магнитное поле противодействует продвижению частицы. Оно беспрепятственно пропускает частицу внутрь только в том случае, если она движется строго вдоль силовой линии магнитного поля. Двигаясь по спирали в сторону более сильного магнитного поля, заряженная частица на каком-то расстоянии перестает углубляться. После этого момента она постепенно (тоже по спирали) движется в противоположную сторону. Магнитное поле выталкивает заряженную частицу в сторону более слабого поля.

Магнитное поле Земли неоднородно. Это видно по форме силовых линий. По мере движения от экватора к полюсам вдоль силовых линий видно, что они сгущаются все больше и больше. Это значит, что магнитное поле увеличивается. В таком магнитном поле, которое увеличивается в обоих направлениях от экватора, заряженная частица оказывается пойманной, захваченной. Вращаясь по спиралям, заряженные частицы движутся в таком поле последовательно, отражаясь от более сильного поля попеременно то в южном, то в северном полушарии. При этом заряженные частицы находятся выше земной атмосферы. Такие заряженные частицы действительно были измерены в магнитосфере Земли. Их назвали поясами радиации.

Как деформируется магнитное поле Земли солнечными частицами? Поскольку заряженные частицы взаимодействуют с магнитным полем, то они могут это поле деформировать. Поток заряженных частиц, пролетающий от Солнца, взаимодействует с самыми внешними силовыми линиями магнитосферы Земли. Концы силовых линий остаются на прежнем месте, в Земле. А сами линии "выворачиваются" и вытягиваются потоком заряженных частиц на ночную сторону. Они прикрывают магнитные полюса, и воронки над полюсами исчезают. Зато образуются новые воронки на полуденном меридиане. Новые воронки удалены от полюсов примерно на 1000 км.

Очень важно, что эти воронки могут смещаться. Чем сильнее энергия солнечного потока заряженных частиц, тем больше силовых линий он выворачивает с дневной стороны на ночную. Тем больше воронка удаляется от полюса.

Под действием солнечных заряженных частиц с дневной стороны магнитосфера Земли ограничена определенным расстоянием от поверхности Земли. Когда Солнце спокойно, это расстояние равно примерно десяти земным радиусам. Во время солнечных бурь поток солнечных частиц усиливается и поджимает магнитосферу с солнечной стороны ближе к Земле. В это время воронки смещаются еще дальше от полюса. При очень сильных солнечных бурях магнитосфера на дневной стороне может быть сжата до трех земных радиусов. Тогда воронки смещаются от полюса.

Под действием солнечных заряженных частиц меняется не только положение воронок, которые у диполя находятся над полюсами.

Воронки не только смещаются по направлению к экватору. Они при этом меняют свою форму. Каждая воронка при этом превращается в сплюснутую воронку-щель, в форме подковы. Она охватывает определенную область на дневной стороне магнитосферы.

Ночная часть магнитосферы мало похожа на дневную. Если на дневной стороне магнитное поле Земли простирается максимум на расстояние в десять земных радиусов, то на ночной стороне оно имеется на огромном расстоянии, равном ста радиусам Земли и более. Силовые линии магнитного поля Земли вытягиваются в направлении движения солнечных частиц, то есть от Земли. Так образуется шлейф силовых линий магнитосферы Земли. Специалисты его называют хвостом магнитосферы.

Заряженные частицы беспрепятственно движутся вдоль силовых линий магнитного поля. Это значит, что солнечные заряженные частицы через воронки на дневной стороне могут проникать сквозь магнитосферу к Земле, к ее атмосфере. Но внутри магнитосферы находятся заряженные частицы, которые там захвачены. В хвосте магнитосферы также имеются заряженные частицы. Они отсюда движутся вдоль силовых линий магнитного поля. Куда они попадут? Можно проследить, что они попадут в Арктику и Антарктику.

Если проследить за путем заряженных частиц на дневной и ночной сторонах магнитосферы, то окажется, что они приходят как раз в то кольцо (овал) , которое светится полярным сиянием. Это что, случайность или закономерность?

В последние дни на научных информационных сайтах появилось большое количество новостей, посвященных магнитному полю Земли. Например, новость о том, что в последнее время оно существенно изменяется, или о том, что магнитное поле способствует утечке кислорода из земной атмосферы и даже про то, что вдоль линий магнитного поля ориентируются коровы на пастбищах. Что представляет собой магнитное поле и насколько важны все перечисленные новости?

Магнитное поле Земли – это область вокруг нашей планеты, где действуют магнитные силы. Вопрос о происхождении магнитного поля до сих пор окончательно не решен. Однако большинство исследователей сходятся в том, что наличием магнитного поля Земля хотя бы отчасти обязана своему ядру. Земное ядро состоит из твердой внутренней и жидкой наружной частей. Вращение Земли создает в жидком ядре постоянные течения. Как читатель может помнить из уроков физики, движение электрических зарядов приводит к появлению вокруг них магнитного поля.

Одна из самых распространенных теорий, объясняющих природу поля, - теория динамо-эффекта - предполагает, что конвективные или турбулентные движения проводящей жидкости в ядре способствуют самовозбуждению и поддержанию поля в стационарном состоянии.

Землю можно рассматривать как магнитный диполь. Его южный полюс находится на географическом Северном полюсе, а северный, соответственно, на Южном. На самом деле, географический и магнитный полюса Земли не совпадают не только по "направлению". Ось магнитного поля наклонена по отношению к оси вращения Земли на 11,6 градуса. Из-за того что разница не очень существенная, мы можем пользоваться компасом. Его стрелка точно указывает на южный магнитный полюс Земли и почти точно на Северный географический. Если бы компас был изобретен 720 тысяч лет назад, то он бы указывал и на географический и на магнитный северный полюс. Но об этом чуть ниже.

Магнитное поле защищает жителей Земли и искусственные спутники от губительного воздействия космических частиц. К таким частицам относятся, например, ионизированные (заряженные) частицы солнечного ветра. Магнитное поле изменяет траекторию их движения, направляя частицы вдоль линий поля. Необходимость наличия магнитного поля для существования жизни сужает круг потенциально обитаемых планет (если мы исходим из предположения, что гипотетически возможные формы жизни похожи на земных обитателей).

Ученые не исключают, что часть планет земного типа не имеют металлического ядра и, соответственно, лишены магнитного поля. До сих пор считалось, что планеты, состоящие из твердых скальных пород, как и Земля, содержат три основных слоя: твердую кору, вязкую мантию и твердое или расплавленное железное ядро. В недавней работе ученые из Массачусетского технологического института предложили образования "скалистых" планет без ядра. Если теоретические выкладки исследователей подтвердятся наблюдениями, то для расчета вероятности встретить во Вселенной гуманоидов или хотя бы что-то, напоминающее иллюстрации из учебника биологии, придется переписать.

Земляне тоже могут лишиться своей магнитной защиты. Правда, точно сказать, когда это произойдет, геофизики пока не могут. Дело в том, что магнитные полюса Земли непостоянны. Периодически они меняются местами. Не так давно исследователи установили, что Земля "помнит" о смене полюсов. Анализ таких "воспоминаний" показал, что за последние 160 миллионов лет магнитные север и юг менялись местами около 100 раз. Последний раз это событие произошло около 720 тысяч лет назад.

Смена полюсов сопровождается изменением конфигурации магнитного поля. Во время "переходного периода" на Землю проникает существенно больше космических частиц, опасных для живых организмов. Одна из гипотез, объясняющих исчезновение динозавров, утверждает, что гигантские рептилии вымерли именно во время очередной смены полюсов.

Кроме "следов" плановых мероприятий по смене полюсов исследователи заметили в магнитном поле Земли опасные подвижки. Анализ данных о его состоянии за несколько лет показал, что в последние месяцы в нем начали происходить . Настолько резких "движений" поля ученые не регистрировали уже очень давно. Вызывающая беспокойства исследователей зона находится в южной части Атлантического океана. "Толщина" магнитного поля в этом районе не превышает трети от "нормальной". Исследователи давно обратили внимание на эту "прореху" в магнитном поле Земли. Собранные за 150 лет данные показывают, что за этот период поле здесь ослабло на десять процентов.

На данный момент трудно сказать, чем это грозит человечеству. Одним из последствий ослабления напряженности поля может стать увеличение (пусть и незначительное) содержания кислорода в земной атмосфере. Связь между магнитным полем Земли и этим газом была установлена с помощью системы спутников Cluster – проекта Европейского космического агентства. Ученые выяснили, что магнитное поле ускоряет ионы кислорода и "выбрасывает" их в космическое пространство.

Несмотря на то, что магнитное поле нельзя увидеть, обитатели Земли хорошо его чувствуют. Перелетные птицы, например, отыскивают дорогу, ориентируясь именно на него. Существует несколько гипотез, объясняющих, как именно они ощущают поле. Одна из последних предполагает, что птицы воспринимают магнитное поле . Особые белки – криптохромы – в глазах перелетных птиц способны менять свое положение под воздействием магнитного поля. Авторы теории считают, что криптохромы могут выполнять роль компаса.

Кроме птиц магнитное поле Земли вместо GPS используют морские черепахи. И, как показал анализ спутниковых фотографий, представленных в рамках проекта Google Earth, коровы. Изучив фотографии 8510 коров в 308 районах мира, ученые заключили, что эти животные предпочтительно (или с юга на север). Причем "реперными точками" для коров служат не географические, а именно магнитные полюса Земли. Механизм восприятия коровами магнитного поля и причины именно такой реакции на него остаются неясными.

Кроме перечисленных замечательных свойств магнитное поле способствует . Они возникают в результате резких изменений поля, происходящих в удаленных регионах поля.

Магнитное поле не обошли своим вниманием сторонники одной из "теорий заговора" – теории о лунной мистификации. Как уже упоминалось выше, магнитное поле защищает нас от космических частиц. "Собранные" частицы скапливаются в определенных частях поля – так называемых радиационных поясах Ван Алена. Скептики, не верящие в реальность высадок на Луну, считают, что во время пролета сквозь радиационные пояса астронавты получили бы смертельную дозу радиации.

Магнитное поле Земли - удивительное следствие законов физики, защитный щит, ориентир и создатель полярных сияний. Если бы не оно, жизнь на Земле, возможно, выглядела бы совсем иначе. В общем, если бы магнитного поля не было - его необходимо было бы придумать.

Сделал и прислал Кайдалов Анатолий.
_____________________

Читатель!
Прежде всего я должен честно тебя предупредить: вопрос, который ты только что прочёл на обложке, - «Почему Земля - магнит?» - ужасно сложный. Мало того, признаюсь тебе по секрету: окончательного ответа на него нет до сих пор. Но разве не интересно попытаться самому раскрыть тайну, которую не разгадал ещё никто на свете? Я знаю, трудности тебя не испугают! Однако ты, как человек разумный, хорошо понимаешь: с налёту, эдаким лихим наскоком, тайну природы не раскроешь. Нужно как следует подготовиться, изучить со всех сторон вопрос, которым тебе предстоит заняться. Но у сложного вопроса много сторон. В каком порядке их изучать?
Давай наметим план действий. Раз ты решил выяснить, почему Земля - магнит, тебе не мешает сначала познакомиться со свойствами магнитов. Вооружившись этими сведениями, ты сможешь исследовать и магнитные свойства нашей чудесной планеты. А затем попробуешь найти этим свойствам объяснение.
Для опытов тебе понадобится немного: магнит, иголки, гвоздь, железные опилки (их ты можешь получить, опилив над листком бумаги тот же гвоздь напильником с мелкой насечкой), кусок провода и батарейка для карманного фонарика.
Итак, за дело!

КАК СДЕЛАТЬ МАГНИТНЫЙ КОМПАС?

Прикоснись иголкой к любому магниту, какой найдётся в квартире: к магнитному держателю для мыла, магниту громкоговорителя или, на худой конец, к магнитной резине на дверце холодильника.
Положи иголку на железные опилки. Смотри: крупинки железа сразу же прилипли к ней! Раньше не прилипали, а теперь прилипли. Выходит, стоило иголке «пообщаться» с магнитом, как она и сама стала магнитом - намагнитилась!
Но обрати внимание: посредине иголки крупинок прилипло немного, зато концы облеплены так, что получились «ёжики»! Значит, на концах магнит притягивает намного сильнее, чем в середине.
Можно убедиться в этом и с помощью другого опыта: прикоснись гвоздём к середине намагниченной иголки - она не притянется, а прикоснёшься к концам - притянется. То место, где магнит притягивает сильнее всего, называется ПОЛЮСОМ.
Сколько у иголки таких мест? Считать недолго - два.
Значит, и полюса два. Есть ли между ними какая-нибудь разница?
Укрепи иголку-магнит на поплавке (можно попросту проткнуть кусочек пробки или пенопласта) и пусти плавать в тарелке.
Смотри: иголка повернулась так, что одним концом смотрит на север, а другим на юг. Ты можешь это проверить по Солнцу (в полдень оно точно на юге) или с помощью компаса.
Попробуй повернуть иголку-магнит наоборот. Видишь - она тут же вернулась в прежнее положение. И упрямо возвращается, как бы ты её ни крутил.
Но раз один магнитный полюс всё время смотрит на север, а другой - на юг, значит, полюсы магнита отличаются друг от друга!
Естественно, что тот полюс, который смотрит на север, назвали СЕВЕРНЫМ ПОЛЮСОМ, а тот, что на юг - ЮЖНЫМ ПОЛЮСОМ.
Магнитный компас, которым пользовались в давние времена моряки, очень похож на твой самодельный компас: это был просто магнит на поплавке.
В современном корабельном компасе тоже есть поплавок, но художник его не нарисовал, чтобы тебе видны были магниты. Их в морском компасе несколько (четыре или шесть).
Как бы сильно ни накренилось судно при качке, магниты останутся в горизонтальном положении.

МОЖНО ЛИ ОТДЕЛИТЬ СЕВЕРНЫЙ МАГНИТНЫЙ ПОЛЮС ОТ ЮЖНОГО?

Переломи свою иголку-магнит посредине (что поделаешь, наука требует расходов!). Только осторожно, не уколись: оберни иголку мокрой тряпочкой или бумажкой и тогда уже ломай. Готово? Теперь положи обе половинки на железные опилки. И у той, и у другой, как ни в чём не бывало, притягивают оба конца!
Пусти плавать на поплавке ту половинку иглы, которую ты хотел лишить южного полюса, оставив ей только северный. Он и смотрит по-прежнему на север, а другой конец половинки - тот, что жил прежде посредине иглы, - на юг. Значит, это южный полюс!
Таким же образом ты убедишься, что вторая половинка, которой ты хотел оставить только южный полюс, «отрастила» себе новый северный полюс.
Оказывается, магниты даже ящериц перещеголяли: ящерица отращивает только хвост, да и то ей нужно на это время, а магнит восстанавливает взамен утраченного любой полюс, с какого угодно конца, и притом мгновенно!
До каких пор он сохраняет эту необыкновенную способность?
Ломать иголку на ещё более мелкие части трудно, да и опасно - можно поранить руки. А вот если тебе удастся раздобыть пилку для лобзика (она длинная, тонкая, хрупкая и к тому же хорошо намагничивается), ты быстро убедишься, что, сколько её ни ломай, у любого её обломочка, даже самого маленького, обязательно есть оба магнитных полюса - и северный, и южный.
Я уверен, что когда ты подумаешь над этим, тебе придёт в голову (а может, уже пришла) мысль, которая позволит очень просто объяснить этот удивительный факт: «Наверное, всякий магнит состоит из множества крошечных магнитиков, и у каждого магнитика есть оба полюса - и северный, и южный».

КАК УСТРОЕН МАГНИТ?

Итак, ты предположил, что всякий магнит состоит из множества микроскопических магнитиков, северные полюсы которых смотрят в одну сторону, а южные в другую.
Представь себе - учёным удалось доказать, что магнит устроен именно так.
Но вот что интересно: оказывается, крошечные магнитики - их называют ДОМЕНАМИ - есть даже в ненамагниченном железе! А почему же оно никак не проявляет своих магнитных свойств, хотя прямо-таки «набито» магнитиками-доменами? Вероятно, ты сам догадался: пока железо не намагнитили, его домены располагаются «кто в лес, кто по дрова». А вот когда железо намагничивают, все его домены поворачиваются, словно миниатюрные магнитные стрелочки, и начинают смотреть своими северными полюсами в одну сторону, южными в другую.
Теперь тебе понятно, как намагнитилась твоя иголка - она ведь железная! Стоило тебе прикоснуться иголкой к магниту, как все её домены повернулись в одну сторону, словно по команде: «Рравняйсь!!!» Да так и остались. Иголка сама превратилась в магнит! И будет оставаться магнитом, пока что-нибудь не нарушит строй магнитиков-доменов.
В ненамагниченном железе магнитики-домены располагаются как попало...
...но магнит, пообщавшись с железом, наводит среди доменов «железный» порядок.

КАК РАЗМАГНИТИТЬ МАГНИТ?

Попроси кого-нибудь из взрослых нагреть намагниченную иголку так, чтобы она раскалилась (нагревать лучше не спичкой, а в пламени кухонной горелки). Дай иголке остыть и снова опусти в железные опилки. Концы иголки больше не притягивают! Иголка размагнитилась! Почему?
Ты знаешь, конечно, что все на свете вещества состоят из крошечных-прекрошечных частичек - атомов. Разумеется, из атомов состоит и железо. В каждом домене ни много, ни мало - тысяча миллиардов атомов железа! Причём атомы железа в домене подчинены такой же «железной дисциплине», как и сами домены в магните. Но даже в твёрдом теле, и в иголке тоже, атомы непрерывно колеблются, слегка «приплясывают» на месте. Чем сильнее нагрето тело, тем быстрее и беспорядочнее это приплясывание.
Раскалив намагниченную иголку, ты довёл приплясывание атомов железа до бешеной пляски. Понятно, что «железная дисциплина» атомов в доменах нарушилась - домены исчезли, а вместе с ними исчезла и намагниченность. Правда, потом, когда
иголка остыла, домены в ней появились снова, но теперь они смотрят куда попало. Чтобы опять заставить их повернуться в одну сторону, нужна новая «магнитная команда», то есть, иголку придётся намагничивать заново.

ЧТО ОКРУЖАЕТ МАГНИТ?

Опусти гвоздь остриём в железные опилки и приближай к шляпке магнит. Он ещё не прикоснулся к шляпке, а крупинки уже прилипают к острию! Значит, магнитные силы действуют на расстоянии.
Пространство вокруг магнита, где действуют магнитные силы, называют МАГНИТНЫМ ПОЛЕМ.
Исследуй, как ведёт себя в магнитном поле твоя намагниченная иголка на поплавке. Поднеси к ней магнит северным полюсом. Она сразу «заволновалась» и повернулась к нему... каким полюсом? Южным! Теперь поднеси магнит южным полюсом - иголка повернулась и поплыла к нему северным полюсом. Ясно, какой ты сделаешь из этого вывод: разные полюсы испытывают друг к другу явную симпатию - притягиваются. Южный к северному, северный к южному.

Но вернёмся к магнитному полю. К сожалению, мы его не ощущаем и не видим. И всё-таки ты можешь сделать его видимым! Положи на магнит лист плотной бумаги или тонкого плексигласа и насыпь сверху ровным слоем железные опилки. Теперь постучи слегка по листу пальцем. Смотри, какая картинка получилась!
Каждая крупинка железа, попав в магнитное поле, намагнитилась, «приобрела» северный и южный полюсы и стала как бы малюсенькой магнитной стрелочкой. Тысячи таких стрелочек и нарисовали картинку: на ней сразу видно, в каком направлении действуют магнитные силы. Обрати внимание: у полюсов, где магнитное поле сильнее всего, линии, вдоль которых действуют магнитные силы - их называют МАГНИТНЫМИ СИЛОВЫМИ ЛИНИЯМИ, - идут густо-прегусто.
Глянешь на картинку, и магнитное поле как на ладони! Сразу становится ясно, где оно сильнее, где слабее и в каком направлении магнитные силы повернут магнитную стрелку в той или иной точке этого поля.
Вот как выглядит магнитное поле магнита в форме цилиндра. А как оно выглядит у магнита в форме подковы? Это ты можешь увидеть на третьей странице обложки (в самом конце книги).

КАК ВЫГЛЯДИТ МАГНИТНОЕ ПОЛЕ ЗЕМЛИ?

Теперь ты можешь приступить ко второй части своего плана: исследовать магнитные
свойства нашей планеты. Картонку с железными опилками на Земной шар не положишь, но о магнитном поле Земли можно судить по поведению двух магнитных стрелок. Одна стрелка - обычного компаса, она способна поворачиваться только влево-вправо. Её дополняет другая магнитная стрелка, которая способна поворачиваться вверх и вниз - её называют СТРЕЛКОЙ НАКЛОНЕНИЯ.
Облазав с этими двумя стрелками весь Земной шар, а также облетав его со всех сторон и на разных высотах в космическом корабле (как жаль, что всё это только в воображении!), ты нарисуешь магнитные силовые линии Земли и увидишь, как выглядит её магнитное поле.
Во время этого путешествия ты обнаружишь на Земле две замечательные точки: стрелка
наклонения здесь становится вертикально и показывает остриём вниз, а стрелка обычного компаса вообще ничего не показывает - она крутится, как ей вздумается. Эти две точки - магнитные полюсы Земли!

ПОЧЕМУ МАГНИТНОЕ ПОЛЕ ЗЕМЛИ «КУВЫРКАЕТСЯ»?

Нам с тобой повезло - в наши дни геофизики, то есть физики, изучающие Землю, умеют выстукивать её, просвечивать и взвешивать не хуже, чем врач больного. И вот многие из них предполагают, что в глубинах Земного шара, особенно в сердцевине Земли - её ядре, действительно много богатых железом веществ и даже чистого железа! Правда, в глубинах нашей планеты ужасно жарко - на очень большой глубине температура такая высокая, что железо там находится в расплавленном состоянии, словно в доменной печи.
«Но разве расплавленное железо способно намагнититься? - удивишься ты. - Я просто раскалил иголку, и то она потеряла магнитные свойства!»
Видишь ли, твоё возражение было бы правильным, если бы речь шла не о ядре Земли. Там ведь царят совсем другие условия! На вещество ядра давит вся земная толща. Колоссальное давление «притискивает» друг к другу атомы железа с такой неимоверной силой, что в середине ядра жидкое железо снова становится твёрдым, хотя температура там четыре тысячи градусов. У нас, на поверхности, железо при такой температуре давно превратилось бы в пар!
Что если в таких необычных условиях магнитные свойства у железа тоже необычные? Вполне возможно (учёные это допускают), что оно всё-таки способно намагничиваться, несмотря на адскую жару. Но если даже твёрдое железное ядро Земли намагничено, всё равно сейчас можно уверенно сказать: не железный магнит внутри нашей планеты главный «виновник» того, что у Земного шара есть магнитное поле!
Откуда такая уверенность? Она появилась не так давно - после того, как геофизики ухитрились узнать, каким было магнитное поле Земли тысячи и даже миллионы лет назад. У многих горных пород (особенно у тех, что содержат железо) оказалась отличная магнитная память! Допустим, вылилась когда-то во время извержения вулкана лава, и пока она остывала, магнитное поле Земли её намагнитило. Потом оно изменилось, но у затвердевшей лавы осталось «воспоминание» о том магнитном поле, которое её первым намагнитило - ОСТАТОЧНАЯ НАМАГНИЧЕННОСТЬ. Её-то и научились измерять геофизики. И обнаружили невероятную вещь: магнитные полюсы.
Земли много раз менялись местами! Скажем, за последний миллион лет это случилось семь раз. Причём седьмой раз они поменялись местами примерно десять тысяч лет назад. И вот что удивительно: «обмен» магнитными полюсами совершался прямо-таки с фантастической быстротой - магнитному полю Земли, чтобы перевернуться, требовалось всего-навсего несколько десятков лет! Для нас с тобой это срок немалый, а для нашей планеты, которая живёт больше четырёх миллиардов лет, - краткий миг!
Такой прыти от «спрятанного» в ядре Земли магнита никто не ожидал. Вообще-то учёным давно было известно, что магнитные полюсы Земли путешествуют. Но чтобы Северный магнитный полюс переехал на место Южного и наоборот? Да ещё так быстро? Нет, ни у одного уважающего себя железного магнита магнитное поле не станет кувыркаться, как акробат! Да и не сможет: перемагнитить железный магнит можно только «насильно» - с помощью более сильного магнита (ты можешь это проделать со своей намагниченной иголкой). Однако никто никогда не видел, чтобы железный магнит вдруг сам ни с того ни с сего поменял местами полюсы - недаром его называют ПОСТОЯННЫМ МАГНИТОМ.

Некоторые геофизики сравнивают нашу планету с доменной печью: тяжёлое железо стекает вниз, к сердцевине Земли - её ядру, а более лёгкий «шлак» всплывает. Мы с тобой живём на тоненькой корочке застывшего сверху «шлака».
И в наше время после каждого извержения вулкана лава, остывая, намагничивается в магнитном поле Земли...

Но если не железный магнит в ядре Земли - главный виновник того, что у неё есть магнитное поле, то кто же?
Теперь ты перейдёшь к третьей, самой трудной части своего плана: попробуешь объяснить магнитные свойства Земли.

МОЖЕТ ЛИ МАГНИТ БЫТЬ «НЕПОСТОЯННЫМ»?

Протяни над стрелкой компаса (всё равно какого - покупного или своего, самодельного, на поплавке) провод и прикоснись на мгновение его концами к «плюсу» и «минусу» батарейки для карманного фонарика. Стрелка отклонилась, словно к ней поднесли магнит!
Ещё сильнее будет эффект, если ты намотаешь на картонную или бумажную трубку с полсотни витков тонкого провода и подключишь его концы к батарейке. Проволочная катушка, по которой идёт электрический ток, ведёт себя как настоящий магнит! Она не только поворачивает магнитную стрелку, но может и намагнитить железные предметы - в этом ты можешь убедиться, поместив внутрь катушки гвоздь и сунув его конец в железные опилки.
Проволочная катушка с электрическим током называется ЭЛЕКТРОМАГНИТОМ. Но какой же это удивительный магнит - электромагнит! Его можно включать и выключать, его магнитным полем очень просто управлять. Увеличил ток, подсоединив ещё одну батарейку, - магнитное поле усилилось. Уменьшил ток, пустив его через лампочку, - поле стало слабее. Поменял местами концы катушки, магнитное поле тут же «перевернулось» - это легко обнаружит магнитная стрелка. Так и хочется назвать катушку с током «непостоянным магнитом»!
А как выглядит её магнитное поле? Накрой катушку листком бумаги с железными опилками и пощёлкай по листку.
Смотри: силовые линии магнитного поля у катушки с током в точности такие, как у магнита тех же размеров в форме цилиндра! Но ведь и у Земли - помнишь? - магнитное поле такое, как если бы внутри неё был магнит в форме цилиндра...
А спорим, что я знаю, о чём ты сейчас подумал! «Вот если бы в ядре Земли был не железный магнит, а катушка с электрическим током, то странное поведение земного магнитного поля легче было бы объяснить... Только откуда в ядре Земли катушка из проволоки?»
Ты прав, не может её там быть. И всё-таки твоя мысль заслуживает серьёзного обсуждения! Что, если электрический ток способен течь по кругу без всякой катушки?
Однако прежде чем решить, способен он так течь или не способен, надо сначала выяснить, что же это такое - электрический ток.

ЧТО ТАКОЕ ЭЛЕКТРИЧЕСКИЙ ТОК?

«Ток» - значит, что-то течёт. По трубам текут жидкости и газы: вода, нефть, воздух, горючий газ...
А что и куда течёт по проводу, когда ты подключаешь его концы к батарейке?
Долгое время учёные думали, что по проводам течёт особая электрическая жидкость. Что представляет собой эта загадочная жидкость, из чего состоит, никто не мог толком объяснить. Но вот в самом конце прошлого века английский физик Джозеф Джон Томсон открыл невероятно лёгкие и малюсенькие электрические частички. Они оказались намного меньше даже крошечных-прекрошечных атомов! Томсон назвал открытые им частицы ЭЛЕКТРОНАМИ.
Вскоре после этого открытия другой английский физик, Эрнест Резерфорд, установил, что электроны «живут» в каждом атоме - они непрерывно кружатся вокруг атомного ядра.
Но вот какая интересная особенность оказалась у атомов металлов: самые дальние от атомного ядра электроны легко покидают свои атомы и начинают бродить по всему металлу. В любом металле полным-полно таких беспризорных, или, как называют их физики, свободных электронов. И конечно, в любом металлическом проводе их тоже великое множество. Они беспорядочно мечутся между атомами металла... пока не появится сила, которая заставит их двигаться в каком-нибудь одном направлении.
Подключил ты, например, концы провода к «плюсу» и «минусу» батарейки - и сразу же появилась сила, которая заставила электроны двигаться к «плюсу» батарейки. По проводу пошёл ток.
Правда, свободные электроны - «существа» настолько непоседливые, что даже во время этого направленного движения продолжают метаться из стороны в сторону. Словом, ведут себя, как рой мошек, когда его сдувает ветерком: каждая мошка в рое мечется туда-сюда вроде бы беспорядочно, но в целом рой всё-таки движется под действием ветерка в одном направлении! Вот что такое электрический ток - это направленное движение электронов!

КАК ЗАСТАВИТЬ ЭЛЕКТРОНЫ ДВИГАТЬСЯ ПО КРУГУ?

Теперь мы с тобой можем вернуться к вопросу: способен ли электрический ток течь по кругу без проволочной катушки? Выясним сначала, нельзя ли создать направленное движение электронов прямо в толще металла - твёрдого или жидкого? Говоря о толще металла, мы, само собой, имеем в виду железное ядро Земли.
В толще океана подобные вещи бывают. Взять хотя бы знаменитое течение Гольфстрим: мощная струя воды течёт в океане словно по гигантской невидимой трубе, хотя на самом деле никакой трубы, конечно, нет. Не могло ли и в Земном ядре возникнуть могучее «течение» электронов? Причём течение в форме кольца, чтобы электроны двигались словно по виткам гигантской проволочной катушки, хотя никакой катушки там, конечно, нет. Что может заставить электроны двигаться таким образом?
Вспомни свой опыт - «провод с током над магнитной стрелкой». Проделав его, ты обнаружил, что электрический ток создаёт магнитное поле. Потом ты узнал, что электрический ток - это направленное движение электронов. Значит, это движущиеся электроны создают вокруг себя магнитное поле! Каждый электрон, когда он движется, превращается в крошечный магнитик!
Но в таком случае на электрон-магнитик должны как-то влиять другие магниты. Они и в самом деле влияют! Если электрон вторгается во владения какого-нибудь магнита, то есть в его магнитное поле, оно сбивает пришельца с пути. Посмотри на картинку: электрон собирался пересечь «чужое» магнитное поле и влетел в него поперёк магнитных силовых линий, но не тут-то было! Магнитное поле искривило путь «нарушителя», и он вместо прямой полетел... как? По кругу!

ПОЧЕМУ ЖЕ ЗЕМЛЯ - МАГНИТ?

Попробуем представить, как могло возникнуть у нашей планеты магнитное поле...
У ядра Земли, как ты помнишь, сердцевина из твёрдого железа, нагретого до очень высокой температуры. И вот однажды во время беспорядочной тепловой пляски атомов-магнитиков железа какое-то их число, пусть небольшое, случайно оказалось повёрнутым в одну сторону. Могло это произойти? Вполне! Такое и с танцорами-людьми бывает. Немедленно у ядра появилось магнитное поле - слабое-преслабое, но появилось. Оно бы тут же исчезло, но в этот момент началось самое интересное...
Сердцевина из твёрдого железа окружена в ядре толщей жидкого железа. А жидкость может течь! Даже в застойном пруду вода хоть медленно, да перемешивается. А жидкая толща ядра и подавно живёт бурной жизнью: Земля ведь вращается, словно волчок, - уже от одного этого в жидкой части ядра наверняка возникают потоки.
Представь, что какой-то из этих потоков течёт поперёк слабого-преслабого случайно возникшего магнитного поля. Что произойдёт со свободными электронами, которых в железе, как и во всяком металле, полным-полно? Ясно что: когда они вместе с потоком начнут пересекать магнитное поле, оно искривит их путь и заставит двигаться по кругу, словно по виткам гигантской катушки! Но ведь у этой невидимой катушки сразу появится и собственное магнитное поле, верно?
Теперь внимание! Посмотри, как направлено собственное магнитное поле «катушки»: в точности так же, как слабое-преслабое случайно возникшее поле, которое искривило путь электронов и заставило их двигаться по кругу! Оба поля сложились - магнитное поле стало сильнее. Оно уже способно искривить путь большего числа электронов, вовлечь их в «хоровод» вокруг ядра - круговой электрический ток усилился, усилилось и его магнитное поле.
Всё больше электронов бегает по кругу, всё сильнее круговой ток, всё сильнее его магнитное поле - пока в хоровод вокруг ядра не будут вовлечены все пересекающие магнитное поле электроны.
В глубинах Земли появился мощный электромагнит, который к тому же «сам себе электростанция» - он ведь сам «гонит» электроны по кругу, то есть сам питает себя электрическим током! А всё началось со случайно возникшего слабого-преслабого магнитного поля и с пересекающих это поле потоков жидкого железа.
Но потоки в жидкости - штука довольно неустойчивая. В океане, например, течения нередко меняют направления. Могут они менять направление и в жидкой части ядра. К чему это может привести, ты сам догадался: электроны начнут кружиться вокруг ядра в обратную сторону, магнитное поле Земли «перевернётся»!
Вот ты и выполнил свой план: познакомился со свойствами магнитов, исследовал магнитные свойства Земли и попытался найти этим свойствам объяснение. Но чтобы доказать, что магнитное поле у Земли появилось именно так, как мы с тобой предположили, необходимо точно выяснить, что представляют собой потоки жидкого железа в глубинах Земли, как они возникают и как текут. Кроме того, нужно сравнить магнитные свойства Земли с магнитными свойствами её сестёр - других планет Солнечной системы, и узнать, что у них внутри - есть ли жидкое ядро, какие потоки возникают в нём из-за вращения планеты?
Словом, дел ещё невпроворот. Послушай, а вдруг ты окажешься тем самым человеком, который окончательно разгадает вековую тайну природы: почему Земля - магнит?
Желаю успеха!

_____________________

Распознавание - БК-МТГК.