Электронный трансформатор. Трансформатор для галогенных ламп – обязательный элемент галогенных светильников Применение электронного трансформатора для галогенных ламп 12в

При подборе оборудования для светодиодной подсветки или светодиодного освещения, неизбежно возникает задача выбора блока питания для системы. Специалисты по светодиодному оборудованию всегда предлагают использовать специализированные блоки питания. У человека, столкнувшегося с этим оборудованием в первый раз, как правило, возникает вполне естественный вопрос - почему нельзя применить электронный трансформатор для галогенных ламп? Он, при одинаковой мощности, имеет меньший размер, меньшую цену, да и выходное напряжение у него тоже 12 вольт. Те, кто просто хочет получить ответ на этот вопрос, не вникая в подробности, может сразу перейти к выводам в конце статьи.

Для тех же, кто хочет подробнее разобраться в вопросе – немного теории.

Для начала хочется отметить, что практически все современные источники питания – это импульсные преобразователи. Принципиальное отличие их от применявшихся ранее аналоговых (или линейных) источников питания заключается в том, что преобразование напряжения в них осуществляется не на частоте питающей электросети (50Гц), а на значительно более высокой частоте (обычно в диапазоне 30000-50000 Гц). Благодаря переходу на такие частоты удалось значительно уменьшить размеры и вес источников питания, а также значительно повысить их КПД, который в современных моделях достигает 95%.

Чтобы понять различие между полноценным блоком питания и электронным трансформатором, разберемся с их внутренним устройством.

Рассмотрим структурную схему обычного электронного трансформатора для питания галогенных ламп (рис. 1).

Рис.1 Структурная схема электронного трансформатора, предназначенного для питания галогенных ламп.

Переменный ток частотой 50 Гц и напряжением 220 В (Рис.2а) подается на входной выпрямитель, представляющий из себя, как правило, диодный мост. На выходе выпрямителя (Рис.2б) мы получаем импульсы напряжения одной полярности и удвоенной частоты – 100Гц.


Рис.2 Формы напряжения на входе (а) и выходе (б) выпрямителя.

Далее это напряжение подается на каскад, выполненный на ключевых транзисторах, которые при помощи положительной обратной связи введены в режим генерации. Таким образом, на выходе этого каскада формируются высокочастотные импульсы с частотой генерации и амплитудой сетевого напряжения. Очень важно для нашего случая обратить внимание на то, что генерация в подобной схеме возникает не всегда, а только при условии, что нагрузка электронного трансформатора находится в определенных пределах, например, от 30 до 300 Ватт. Кроме того, поскольку питание ключевого каскада осуществляется импульсами с выхода выпрямителя, то высокочастотное колебание генератора оказывается промодулированным импульсами частотой 100 Гц.

Сформированное таким образом напряжение сложной формы подается на понижающий трансформатор, на выходе которого мы имеем напряжение такой же формы, но величиной, подходящей для питания галогенных ламп. Здесь стоит отметить, что для нити накаливания, которая является источником света в галогенных лампах, не имеет значение формы питающего напряжение. Для ламп накаливания важно только действующее напряжение – т.е. величина напряжения, усредненная за период времени. Когда в характеристиках электронного трансформатора указывается выходное напряжение 12 вольт, то речь идет как раз о действующем напряжении. На рис.3 приведены реальные осциллограммы, снятые на выходе электронного трансформатора.


Рис.3 Осциллограммы на выходе электронного трансформатора, предназначенного для питания галогенных ламп.

Из осциллограммы Рис.3а видно, что импульсы на выходе электронного трансформатора следуют с частотой 55000 Гц, имеют очень крутые фронты и амплитудное значение 17 вольт. По осциллограмме на Рис.3б можно заметить, что почти 20% времени напряжение на выходе электронного трансформатора вообще равно нулю (горизонтальные участки между всплесками напряжения). Что же произойдет, если такое напряжение подать, например, на светодиодную лампу? В любую светодиодную лампу всегда встроен собственный драйвер для обеспечения оптимального режима работы светодиодов. Этот драйвер будет пытаться сгладить скачки напряжения, но гарантировать долгую надежную работу в этом случае невозможно. Что касается светодиодной ленты – то для ее питания вообще требуется постоянное напряжение.

Теперь рассмотрим структурную схему стабилизированного блока питания, используемого совместно со светодиодным оборудованием (рис. 4).

Рис.4 Структурная схема блока питания постоянного тока со стабилизированным выходным напряжением, предназначенного для питания светодиодного оборудования.

Первый блок – уже знакомый нам входной выпрямитель, который не имеет никаких отличий от выпрямителя, рассмотренного нами выше. С его выхода напряжение (см. Рис.2б) подается на сглаживающий фильтр, после которого приобретает форму, показанную сплошной линией на Рис.5.

Рис.5 Форма напряжения на выходе сглаживающего фильтра.

Как видно из рисунка, пульсации на выходе фильтра почти отсутствуют и форма напряжения близка к прямой линии.

Это напряжение подается на силовые транзисторные ключи, к выходу которых, как и в случае с электронным трансформатором, подключен понижающий трансформатор. Отличие заключается в том, что работой ключей управляет специализированная микросхема, в состав которой входит задающий генератор, ШИМ контроллер и различные цепи управления.

Механизм использования ШИМ (широтно-импульсной модуляции) в блоке питания заключается в том, что меняя ширину коммутирующих импульсов, подаваемых на силовые ключи, можно менять напряжение на выходе блока питания. Благодаря этому, подавая сигнал управления с выхода блока питания на вход контроллера ШИМ, появляется возможность стабилизировать выходное напряжение.

Стабилизация выходного напряжения осуществляется следующим образом. Когда выходное напряжение, под влиянием внешних факторов, повышается, сигнал ошибки передается с выхода блока питания на контроллер ШИМ, ширина импульсов уменьшается, и выходное напряжение снижается, приходя в норму. При понижении выходного напряжения аналогичным образом происходит увеличение ширины коммутирующих импульсов. Благодаря такой работе, выходное напряжение всегда поддерживается в заданном диапазоне.

Поскольку режим работы задающего генератора в данной схеме не зависит от внешних воздействий, а также благодаря цепям стабилизации, выходное напряжение остается постоянным во всем диапазоне допустимой мощности нагрузки, например, от 0 до 100 Вт.

Кроме того, наличие обратной связи позволило защитить блок питания от выхода из строя. При превышении потребляемой мощности, при повышении выходного напряжения выше критического, а также при коротком замыкании в нагрузке происходит автоматическое выключение блока питания. После устранения причины, вызвавшей срабатывание защиты, блок питания запускается вновь.

После понижающего трансформатора высокочастотные разнополярные импульсы поступают на выпрямитель, где преобразуются в импульсы одной полярности. Выходной фильтр сглаживает импульсы после выпрямления и превращает их в постоянное напряжение с низким уровнем пульсаций.

Благодаря рассмотренным мерам стабилизации и фильтрации, нестабильность постоянного напряжение на выходе блока питания обычно не превышает 3% от номинального, а напряжение пульсаций имеет величину не более 0,1 вольта.

Также немаловажное положительное влияние выходного фильтра - значительное снижение уровня электромагнитных помех, излучаемых блоком питания и в особенности помех, излучаемых проводами, подключенными к его выходу.

Выводы

Электронные трансформаторы, предназначенные для питания галогенных ламп, использовать для питания светодиодного оборудования нельзя потому, что:

1. Значение 12 вольт, указанное в паспорте электронного трансформатора – это действующее (усредненное) напряжение. Реально в выходном напряжении могут присутствовать короткие импульсы, амплитудой до 40 вольт.

2. Напряжение на выходе электронного трансформатора высокочастотное и невыпрямленное. Оно содержит импульсы разной полярности, как положительной, так и отрицательной.

3. Выходное действующее напряжение электронных трансформаторов нестабильно, зависит от входного напряжения питающей сети, от мощности подключенной нагрузки, от температуры окружающей среды и может лежать в пределах 11-16 вольт.

4. Электронный трансформатор не способен работать при маленькой нагрузке. В его характеристиках обычно указывается нижняя и верхняя граница допустимой мощности нагрузки, например 30-300 ватт.

Первые три пункта неминуемо приведут к преждевременному выходу светодиодного оборудования из строя. В некоторых случаях оборудование может выйти из строя уже при первом включении. Такая поломка не будет являться гарантийным случаем.

При замене галогеновых ламп на светодиодные в уже существующих системах, помимо первых трех пунктов, необходимо учитывать и четвертый. Потребляемая мощность светодиодных ламп в 10 раз меньше мощности галогеновых. При недостаточной нагрузке электронный трансформатор может не включиться совсем или будет периодически включаться и выключаться. При такой замене ламп в любом случае рекомендуется заменять и источник питания.

Галогеновые лампы с каждым днем все активнее применяются в украшении различных торговых комплексов и витрин. Яркая цветовая гамма, насыщенность в передаче изображения придают им все большую популярность. Срок их службы намного больше, чем у обычных ламп. При этом они могут длительно работать без выключения. В галогенках используются нити накала, но процесс свечения, в сравнении с лампами накаливания, у них отличается благодаря наполнению баллона особым составом. Такие лампочки используются в различных светильниках, люстрах, кухонной мебели и бывают 220 и 12 вольтовые. Блок питания для галогенок напряжением 12 вольт необходим, потому что при прямом их включении в электрическую сеть произойдет короткое замыкание.

Технические характеристики

Вольтаж галогенок бывает не только 220 и 12 вольт. В продаже можно найти лампочки на 24 и даже на 6 вольт. Мощность тоже может быть различной – 5, 10, 20 ватт. Галогеновые лампы от 220 В включаются прямо в сеть. Тем, которые работают от 12 В, необходимы специальные устройства, преобразующие ток из сети для 12 вольт, – так называемые трансформаторы или специальные блоки питания.

Двенадцативольтовые галогенки работают очень хорошо. Раньше, в 90-е годы, применялся трансформатор больших размеров на 50 Гц, который обеспечивал работу только одной галогеновой лампы. В современном освещении применяются импульсные высокочастотные преобразователи. По размерам очень маленькие, но могут потянуть 2 – 3 лампы одновременно.

На современном рынке встречаются как дорогие, так и дешевые блоки питания. В процентном соотношении дорогих продается около 5 %, а дешевки намного больше. Хотя, в принципе, дороговизна – это еще не гарантия надежности. В крутых преобразователях, к сожалению, не используются высококачественные детали, а лишь применяются хитроумные схемные «навороты», способствующие нормальной работе блока питания хотя бы в течение гарантийного срока. Как только он заканчивается, устройство сгорает.

Классификация

Трансформаторы бывают электромагнитными и электронными (импульсными). Электромагнитные доступны по цене, надежны, их можно сделать при желании своими руками. У них есть и свои минусы – приличный вес, большие габаритные размеры, повышение температуры при длительной работе. А перепады напряжения значительно сокращают срок работы галогеновых ламп.

Электронные трансформаторы весят намного меньше, у них стабильное напряжение на выходе, они сильно не нагреваются, могут иметь защиту от КЗ и плавный пуск, увеличивающий срок эксплуатации лампы.

Трансформаторы для галогеновых ламп

Разбор будет проведен на примере блока питания фирмы «Ферон Герман Технолоджи». На выходе этот трансформатор имеет ни много ни мало – 5 ампер. Для такой небольшой коробочки значение потрясающее. Корпус сделан герметичным способом, с отсутствием всякого рода вентиляции. Наверное, поэтому некоторые экземпляры таких блоков питания плавятся от высокой температуры.

Схема преобразователя в первом варианте очень простая. Настолько минимален набор всех деталей, что вряд ли из нее можно что-то выкинуть. При перечислении видим:

  • мост из диодов;
  • RC цепь с динистором, чтобы запустился генератор;
  • генератор, собранный на полумостовой схеме;
  • трансформатор, понижающий входное напряжение;
  • низкоомный резистор, который служит в качестве предохранителя.

При большом перепаде напряжения такой преобразователь на 100% «сдохнет», приняв весь «удар» на себя. Все выполнено из довольно дешевого набора деталей. Лишь к трансформаторам нет никаких нареканий, потому что они сделаны на совесть.

Второй вариант выглядит очень слабым и недоработанным. В эмиттерные цепи вставлены резисторы R5 и R6 для ограничения тока. При этом совершенно не продумана блокировка транзисторов в случае резкого повышения тока (ее просто нет!). Сомнение вызывает электрическая цепь (на схеме она красным цветом).

Фирма «Ферон Герман Технолоджи» выпускает галогеновые лампы мощностью до 60 ватт. Сила тока блока питания на выходе получается 5 ампер. Это многовато для такой лампочки.

При снятии крышки обратите особое внимание на размеры радиатора. Для выходных 5 ампер они очень маленькие.

Расчет мощности трансформатора для ламп и схема подключения

Продаются сегодня различные трансформаторы, поэтому существуют определенные правила подбора необходимой мощности. Не стоит брать трансформатор слишком мощный. Он будет работать практически вхолостую. Недостаток мощности приведет к перегреву и дальнейшему выходу устройства из строя.

Рассчитать мощность трансформатора можно самостоятельно. Задачка скорее математическая и по силам каждому начинающему электрику. Например, необходимо установить 8 точечных галогенок напряжением 12 В и мощностью 20 ватт. Общая мощность при этом составит 160 ватт. Берем с запасом на 10 % примерно и приобретаем мощностью 200 ватт.

Схема №1 выглядит примерно таким образом: на линии 220 стоит одноклавишный выключатель, при этом оранжевый и синий провод подсоединяются ко входу трансформатора (первичные клеммы).

На линии 12 вольт все лампы подключаются к трансформатору (на вторичные клеммы). Соединяющие медные провода обязательно должны иметь одинаковое сечение, иначе яркость у лампочек будет разная.

Еще одно условие: провод, соединяющий трансформатор с галогеновыми лампами, должен быть длиной не менее 1,5 метров, лучше, если 3. Если сделать его слишком коротким, он начнет греться, и яркость лампочек снизится.

Схема №2 – для подключения галогеновых светильников. Здесь можно поступить по-другому. Разбить, к примеру, шесть светильников на две части. Для каждой установить понижающий трансформатор. Правильность такого выбора обусловлена тем, что при поломке одного из блоков питания вторая часть светильников все-таки будет продолжать работать. Мощность одной группы составляет 105 ватт. С небольшим коэффициентом запаса получаем, что приобрести необходимо два трансформатора на 150 ватт.

Совет! Каждый понижающий трансформатор запитайте своими проводами и соедините их в распределительной коробке. Места соединения оставьте в свободном доступе.

Переделка блока питания своими руками

Для работы галогенных ламп начали применяться импульсные источники тока с высокочастотным преобразованием напряжения. При домашнем изготовлении и налаживании довольно часто сгорают дорогостоящие транзисторы. Так как питающее напряжение в первичных цепях достигает 300 вольт, то к изоляции предъявляются очень высокие требования. Все эти трудности вполне можно обойти, если приспособить готовый электронный трансформатор. Он применяется для питания 12-вольтовых галогенок в подсветке (в магазинах), которые запитываются от стандартной электросети.

Существует определенное мнение, что получить самодельный импульсный блок питания – дело нехитрое. Можно лишь добавить выпрямительный мост, сглаживающий конденсатор и стабилизатор напряжения. На самом деле все обстоит куда сложнее. Если к выпрямителю подключить светодиод, то при включении можно зафиксировать только одно зажигание. Если выключить и включить преобразователь в сеть снова, повторится еще одна вспышка. Чтобы появилось постоянное свечение, необходимо к выпрямителю подвести дополнительную нагрузку, которая, отбирая полезную мощность, превращала бы ее в тепло.

Один из вариантов самостоятельного изготовления импульсного блока питания

Описываемый блок питания вполне можно изготовить из электронного трансформатора мощностью 105 Вт. Практически этот трансформатор напоминает компактный импульсный преобразователь напряжения. Для сборки дополнительно понадобится согласующий трансформатор Т1, сетевой фильтр, выпрямительный мост VD1-VD4, выходной дроссель L2.


Схема двухполярного блока питания

Такой аппарат стабильно функционирует длительное время с усилителем низкой частоты мощностью 2х20 ватт. При 220 В и силе тока 0,1 А выходное напряжение будет 25 В, при увеличении силы тока до 2 ампер напряжение падает до 20 вольт, что считается нормальной работой.

Ток, минуя выключатель и предохранители FU1 и FU2, следует на фильтр, защищающий цепь от помех импульсного преобразователя. Середину конденсаторов С1 и С2 соединяют с экранирующим кожухом блока питания. Потом ток поступает на вход U1, откуда с выходных клемм пониженное напряжение подается на согласующий трансформатор Т1. Переменное напряжение с другой (вторичной обмотки) выпрямляет диодный мост и сглаживает фильтр L2C4C5.

Самостоятельная сборка

Трансформатор Т1 изготавливается самостоятельно. Число витков на вторичной обмотке влияет на выходное напряжение. Сам трансформатор выполнен на кольцевом магнитопроводе К30х18х7 из феррита марки М2000НМ. Первичная обмотка состоит из провода ПЭВ-2 диаметром 0,8 мм, сложенного вдвое. Вторичная обмотка состоит из 22 витков провода ПЭВ-2, сложенного вдвое. При соединении конца первой полуобмотки с началом второй получаем среднюю точку вторичной обмотки. Дроссель также изготавливаем самостоятельно. Его наматывают на таком же ферритовом кольце, обе обмотки содержат по 20 витков.

Выпрямительные диоды располагаются на радиаторе площадью не менее 50 кв.см. Обратите внимание, что диоды, у которых аноды соединены с минусовым выходом, изолируются от теплоотвода слюдяными прокладками.

Сглаживающие конденсаторы С4 и С5 состоят из трех параллельно включенных К50-46 емкостью по 2200 мкФ каждый. Такой способ применяется, чтобы снизить общую индуктивность электролитических конденсаторов.

На входе блока питания лучше будет установить сетевой фильтр, но возможна работа и без него. Для дросселя сетевого фильтра можно использовать ДФ 50 Гц.

Все детали блока питания располагаются навесным монтажом на плате из изоляционного материала. Полученная конструкция помещается в экранирующий кожух из тонкой листовой латуни или луженой жести. В нем не забудьте просверлить отверстия для вентиляции воздуха.

Правильно собранный блок питания не нуждается в налаживании и начинает сразу же работать. Но на всякий случай можно проверить его работоспособность с помощью подключения на выход резистора сопротивлением 240 Ом, мощностью рассеяния 3 Вт.

Понижающие трансформаторы для галогенных ламп во время работы выделяют очень большое количество тепла. Поэтому необходимо соблюдать несколько требований:

  1. Запрещается подключение блока питания без нагрузки.
  2. Размещайте блок на негорючей поверхности.
  3. Расстояние от блока до лампочки не менее 20 сантиметров.
  4. Для лучшей вентиляции установите трансформатор в нише объемом не менее 15 литров.

Блок питания необходим для галогеновых ламп, работающих от напряжения 12 вольт. Он является своеобразным трансформатором, понижающим входные 220 В до нужных значений.

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).


Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).


Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.



Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).


Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.


Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.


После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).


Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.
Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.


Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.


Для контроля работы всех приборов в доме, в том числе, источников света, необходимы специальные устройства. Предлагаем рассмотреть, что такое электронный трансформатор для галогенных ламп 12В, его принцип работы, характеристики и видео, как самостоятельно подключить прибор.

Что такое трансформатор для ламп

Для контроля работы галогенных ламп необходимо использовать понижающий трансформатор на 12 вольт, им обеспечивается защита источников света от перенапряжений и скачков энергии. Это устройство нормализует входящий электрический ток, в основном используется для небольших лампочек, 6, 12 и 24 В. Самые популярные марки: 55-TASCHIBRA, Comtech, Italmac, Relco, SET-110 LV для ламп Krypton 2 Year E60.

Фото – Cхема трансформатора для галогеновых ламп

Есть два вида трансформаторов понижающего типа:

  1. Тороидальный обмоточный;
  2. Электронный или импульсный.

Принципиальный обмоточный трансформатор наиболее доступен и прост в работе, у него легкое подключение и хорошие показатели мощности. Его принцип работы лежит в связи между катушками прибора. Но у них есть достаточно серьезные недостатки, это значительная масса, вес может достигать нескольких килограмм и обширные габариты. Из-за этого, их область использования очень узкая, чаще всего это либо нежилые помещения, либо здания на производстве (склады, ангары, базы и т.д.). Помимо этого, электромагнитный трансформатор сильно греется во включенном состоянии, что плохо сказывается на галогенных лампочках, и способствует появлению скачков напряжения в квартире, что может повредить прочие электро устройства, в том числе светильники накаливания, оргтехнику и т.д.

Фото – Тороидальный трансформатор

Низковольтный импульсный трансформатор еще называют электронным. Он имеет область применения немного шире за счет своих небольших габаритов и низкого веса. Также он хорошо трансформирует электричество, не нагревается при работе. Его недостатком можно считать высокую стоимость (цена варьируется от 500 до нескольких тысяч рублей). Есть модели таких трансформаторов, которые сразу продаются с защитой встроенного типа от перенапряжений и коротких замыканий, это помогает продлить работоспособность устройств. Их достаточно часто используют, если нужно расположить галогенные светильники в мебели или стенах. Принцип работы этих моделей отличается от тороидальных приборов, они трансформируют энергию за счет специальных устройств полупроводникового типа и универсальных электронных деталей.


Фото – Электронный трансформатор в разборе

Подключение галогенных ламп через трансформатор – это не обязательная мера, но очень желательная, которая способствует экономии семейного бюджета, продлении долговечности лампочек и контролю их работы.

Видео: трансформаторы для галогенных ламп Osram

Расчет и выбор трансформаторов

Перед тем, как начинать работать с устройством, нужно рассчитать потребную мощность трансформатора. В данный момент в любом электротехническом магазине можно купить приборы с разной мощностью, поэтому очень важно подобрать трансформатор именно по своим параметрам. Нужно быть максимально точным, т.к. покупать мощное устройство не рационально, а слишком слабый прибор может не справляться с поставленной задачей.

Предлагаем рассмотреть, как правильно выбрать трансформатор для галогенных ламп:

Допустим, что у Вас в спальне установлено 7 точечных галогенных лампочек, с мощностью 30 Вт и напряжением 12 вольт. Сумма мощности всех осветительных приборов будет 210 Ватт, для подстраховки добавляем к этому значению 10-15 процентов погрешности или запаса мощности – получится 241 Ватт. Получается, что нужно купить понижающий трансформатор для защиты галогенных ламп не меньше, чем с мощностью 240 Ватт, характеристиками 12v (такие устройства есть марки OSRAM, Feron, Philips). Под эти характеристики подходит круглый электромагнитный трансформатор с мощностью в 250 Ватт (250w), напряжение 220/12.


Фото – Трансформатор для галогенных ламп

Всегда выбирайте ближайшее большее значение, от этого зависит безопасность Вашей семьи и долговечность ламп.

Установка трансформатора

Чтобы подключить понижающий трансформатор для нескольких галогенных ламп, можно использовать два метода:

  1. Через одноклавишный выключатель;
  2. При помощи создания отдельных групп электрических светильников.

При этом нужно провода синего и оранжевого цвета (в зависимости от страны-производителя устройства они могут немного варьироваться по оттенкам), необходимо подключить к первичным клеммам L и N входа трансформатора или «Input». На противоположной стороне трансформатора галогенные осветительные устройства нужно подключить к вторичным клеммам понижающего прибора Output. Это действие нужно осуществлять только медными проводниками небольшого сечения, которые обеспечивают минимальную потерю энергии.


Фото – Электронный трансформатор Feron

Главный совет: чтобы свет галогенных ламп был одинаков, нужно подбирать полностью идентичные друг другу проводники и соединять их только параллельно, сечение должно быть не меньше, чем полтора квадратных миллиметра. Также бывают случаи, кода у трансформатора недостаточное количество клемм, их не хватает для подключения всех нужных ламп. Чтобы решить эту проблему нужно купить специальные дополнительные клеммы, их продажа осуществляется в любом электрическом магазине.

Также нужно подобрать правильную длину проводов, в идеале она находится в пределах полутора трех метров, это оптимальное расстояние для передачи данных без образования помех и энергопотерь в проводниках. Кроме того, если сделать провод длиннее, то он начнет нагреваться при работе, что является плохим фактором для галогенных лампочек, они будут по разному гореть, в одинаковых лампах одной группы будет отличаться яркость. В том случае, если нет никакой возможности укоротить длину провода, нужно увеличить его сечение. К примеру от 3 метров до 4 необходимо применять провод с сечением до 2,5 мм 2 . Схема подключения питания имеет следующий вид:

Фото – подключение трансформатора к выключателю

Рассмотрим еще один вариант подключения трансформаторов галогенных ламп.

Российский форум электриков считает, что этот метод более практичен и прост в использовании.

Необходимо все светильники, которые находятся в одной комнате (или здании, при надобности), разделить на несколько групп. Допустим, всего есть семь лампочек, получится две группы по 3 и 4 лампы на каждую. В таком случае для каждой группы нужно покупать трансформатор, как для разных приборов отдельные автоматы.

Фото – подключение трансформатора для галогенных ламп

Это очень удобно, т.к. при прекращении работы какого-либо трансформатора, оставшийся будет функционировать без изменений. Исходя из предыдущих расчетов, их общая мощность 210 Вт, получится, что на одну группу приходится 120 Вт (следует купить прибор на 150w), а на вторую 90 (каждая лампочка по 30 Вт). Подбираем трансформаторы, подходящие под эти требования (не забываем суммировать количество запасной мощности – 10-15 %).

Раз в полгода проверяйте работоспособность трансформаторов. При необходимости проводите плановый ремонт в Москве, Санкт-Петербурге и прочих городах есть специальные учреждения, которые предоставляют такие услуги.

Конструкция галогенных ламп представляет собой более совершенную модификацию традиционных ламп накаливания. Их колбы наполнены парами соединений различных галогенов, препятствующих активному испарению металла с нити накаливания в процессе работы. За счет этого создается высокая температура нити, намного больше, чем у обычных ламп. В результате, в галогенных лампах существенно возрастает светоотдача, спектр излучения становится более равномерным, а срок службы заметно увеличивается.

Данные светильники могут работать с напряжением 220 и 12 вольт, причем второй вариант имеет более высокий ресурс и улучшенные технические характеристики. Существует специальный трансформатор для галогенных ламп 12 вольт, преобразующий сетевое напряжение. Это дает возможность широкого использования таких источников освещения не только в домашних условиях, но и во многих других областях.

Виды трансформаторов

В качестве понижающих устройств могут использоваться два вида трансформаторов. Первый вариант представлен - надежным, доступным и простым в работе. Он обладает хорошими параметрами мощности и легко подключается в сети. Принцип действия этого прибора основан на взаимодействии его катушек между собой.

Существенным недостатком таких устройств является их большой вес, достигающий нескольких килограммов и значительные габариты. Данные характеристики ограничивают сферу использования приборов производственными, складскими и другими нежилыми помещениями. Будучи включенными, эти трансформаторы сильно нагреваются, провоцируют скачки напряжения, отрицательно влияют на галогенные лампочки.

Более широкое применение получили низковольтные , известные как электронные. Основными преимуществами данных устройств являются незначительные габариты и малый вес. Он выполняет качественную трансформацию электрического тока до нужных параметров и не нагревается в процессе работы.

В некоторых случаях электронный трансформатор для галогенных ламп оборудуется встроенной защитой, срабатывающей при коротких замыканиях и перенапряжениях. За счет этого увеличивается срок службы и работоспособность прибора. Эти устройства применяются при встраивании галогенных светильников в стены, мебель или труднодоступные места. Для трансформации электроэнергии в конструкции приборов предусмотрены специальные полупроводниковые устройства, электронные детали и элементы универсального действия.

Галогенные лампы могут функционировать и без трансформатора. Тем не менее, специалисты рекомендуют использование трансформаторных устройств, обеспечивающих необходимый контроль над работой осветительных приборов.

Принцип работы импульсного трансформатора

Поскольку трансформация касается токов высокой частоты, конструкция импульсных приборов отличается малыми размерами сердечника магнитопровода и небольшим количеством трансформаторных обмоток. Это дает возможность существенно снизить размеры и вес данных устройств по сравнению с обычным трансформатором. При этом выходная мощность обоих приборов будет одинаковой.

Для выпрямления напряжения используется диодный мост и сглаживающие конденсаторы. Электрический ток проходит через транзисторный ключ, находящийся в открытом состоянии и далее - через первичную обмотку. В этот момент происходит насыщение магнитопровода сердечника и создание ЭДС на сигнальной обмотке. Ток обмотки заряжает конденсатор, у которого на обкладках повышается напряжение, способное закрыть транзистор.

Постепенно на сигнальной обмотке напряжение уменьшается и пропадает. В результате, через нее происходит разрядка конденсатора и последующее открытие транзистора. Такой цикл повторяется постоянно с высокой частотой, составляющей десятки тысяч Герц.

К обычным лампам накаливания напряжение, поступающее со вторичной обмотки может быть подключено напрямую. Если же требуется запитать электронные устройства постоянным напряжением 12 вольт, то для его преобразования используются выпрямительные диоды. Под влиянием тока вторичной обмотки происходит образование противодействующего магнитного потока. В свою очередь, он способствует росту реактивного сопротивления в первичной обмотке и воздействует на сигнальную обмотку. За счет этого выходное напряжение стабилизируется.

В случае перегорания нити в цепи нагрузки возникает обрыв. Это приводит к нарушению баланса магнитных потоков и сбоям генерации импульсов. Следовательно, электронным трансформаторам необходима нагрузка, подключенная к выходу, при наличии которой они могут нормально функционировать. Отсутствие такой нагрузки быстро выводит прибор из строя. Поэтому при выборе нужной модели трансформатора необходимо знать возможный диапазон мощности ламп, которые требуется подключить. Эти данные должны соответствовать допустимым значениям, указанным в техническом паспорте устройства.

Как рассчитать и выбрать трансформаторное устройство

Потребная мощность трансформатора рассчитывается по определенным параметрам. Требуется получить максимально точные данные, поскольку приобретение слишком мощного устройства будет экономически невыгодным, а слабый трансформатор не выполнит свою функцию.

Расчет мощности трансформатора для галогенных ламп 12 В делается очень просто. Например, в помещении имеется 8 галогенных ламп по 25 ватт каждая, работающие от напряжения 12В. Общая мощность светильников составит 8 х 25 = 200 Вт. Необходимо добавить еще 10-15% на запас мощности и погрешность в расчетах. Получится значение 220-230 Вт. По этой характеристике и нужно делать выбор понижающего трансформатора. Большое количество моделей на современном рынке электроники позволит легко подобрать наиболее подходящий вариант. Существует стандартный ряд мощностей от 50 до 400 ватт, облегчающий выбор блока питания.

Отдельно рассчитываются провода, используемые для подключения. Расчет поперечного сечения выполняется в соответствии с тем значением тока, от которого питаются данные лампы.

Для галогенных светильников используется параллельное подключение по схеме «звезда». Каждую лампочку нужно соединить с трансформатором отдельными кабелями с одинаковым сечением и длиной. В противном случае яркость свечения каждого светильника будет отличаться. Следует учитывать падение напряжения, возникающее на проводе. В связи с этим рекомендуется выбирать максимально короткий проводник. Расстояние от трансформатора до лампы должно быть не менее 20 см, чтобы тепло, выделяемое светильником, не оказывало отрицательного влияния на прибор.

Максимально допустимое падение напряжения не должно превышать 5%. Для расчетов длины проводника используется формула L = 5 x U 2 /(3,6 x P), а для сечения - S = L x 3,6 x P/(5 x U 2). В этих формулах L - длина провода, Р - известная мощность, U - напряжение, S - сечение медного проводника.

Установка и подключение

Подключить понижающий трансформатор для галогенных лампочек 12 вольт к нескольким светильникам можно выполнить двумя способами:

  • Подключаются сразу все лампы с помощью одноклавишного выключателя.
  • Создаются отдельные группы светильников, подключаемых к собственным трансформаторам.

В первом случае провода фазы и нуля подключаются к входным клеммам блока питания. С противоположной стороны устройства галогенные светильники соединяются со вторичными клеммами на выходе. Для этого используются медные проводники с небольшим сечением, сводящие к минимуму . Иногда у трансформатора не хватает клемм, чтобы подключить все количество ламп. Проблема решается с помощью дополнительных клемм, приобретаемых в магазине электротоваров.

Далее нужно правильно подобрать длину проводов, которая должна быть примерно 1,5-3 метра, что исключает помехи и потери энергии в проводах. Слишком длинные проводники будут нагреваться в процессе работы, в результате яркость свечения ламп станет отличаться. Если длина проводника не может быть уменьшена, необходимо увеличить его сечение. Например, сечение провода длиннее трех метров, должно быть не меньше 2,5 мм 2 .

Второй вариант предполагает разбивку светильников на несколько групп. Этот способ считается более практичным и простым в использовании.

На представленном рисунке видно, что все галогеновые лампы разбиты на две группы по три светильника в каждой. Соответственно, потребуется два отдельных трансформатора, аналогично отдельным автоматическим выключателям, защищающим различные приборы.

Данная схема подключения удобна тем, что при выходе из строя любого трансформатора, другой продолжит свою работу без каких-либо проблем. Выбор мощности трансформаторных устройств производится отдельно на каждую группу по методике, рассмотренной ранее. Самое главное - на забывать о запасе мощности в 10-15%.