Понятие температуры. Значение слова «температура Чем является температура в физике

Школьных и вузовских учебниках можно встретить множество самых различных объяснений температуры. Температура определяется как величина, отличающая горячее от холодного, как степень нагретости тела, как характеристика состояния теплового равновесия, как величина, пропорциональная энергии, приходящейся на степень свободы частицы, и т.д. и т.п. Чаще всего температуру вещества определяют как меру средней энергии теплового движения частиц вещества, или как меру интенсивности теплового движения частиц. Небожитель физики – теоретик удивится: «А чего тут непонятного? Температура – это dQ / dS , где Q – теплота, а S – энтропия!» Такое изобилие определений у любого критически мыслящего человека вызывает подозрение, что общепринятого научного определения температуры в настоящее время в физике не существует.

Попытаемся найти простое и конкретное толкование этого понятия на уровне, доступном для выпускника средней школы. Представим себе такую картину. Выпал первый снег, и два брата на перемене в школе затеяли забаву , известную под названием «снежки». Посмотрим, какая энергия передается игрокам в ходе этого состязания. Для простоты полагаем, что все снаряды попадают в цель. Игра протекает с явным перевесом для старшего брата. У него и снежные шарики покрупнее, да и бросает он их с большей скоростью . Энергия всех брошенных им снежков , где N с – количество бросков, а - средняя кинетическая энергия одного шарика. Средняя энергия находится по обычной формуле:

здесь m - масса снежков, а v - их скорость.

Однако не вся затраченная старшим братом энергия будет передана его младшему партнеру. В самом деле, снежки попадают в цель под разными углами, поэтому некоторые из них, отразившись от человека, уносят часть первоначальной энергии. Правда, бывают и «удачно» брошенные шарики, результатом которых может быть синяк под глазом. В последнем случае вся кинетическая энергия снаряда передается обстреливаемому субъекту. Таким образом, мы приходим к выводу, что энергия снежков, переданная младшему брату, будет равна не E с , а
, где Θ с – усреднённое значение кинетической энергии, которое передается младшему партнеру при попадании в него одного снежного шарика . Понятно, что чем больше энергия, приходящаяся в среднем на один брошенный шарик, тем больше будет и средняя энергия Θ с , передаваемая мишени одним снарядом. В простейшем случае зависимость между ними может быть прямо пропорциональной: Θ с =a . Соответственно младший школьник затратил за всё состязание энергию
, но энергия, переданная старшему брату, будет меньше: она равна
, где N м – число бросков, а Θ м – усреднённая энергия одного снежка, поглощенная старшим братом.

Нечто подобное происходит при тепловом взаимодействии тел. Если привести в контакт два тела, то молекулы первого тела за небольшой промежуток времени передадут второму телу энергию в виде теплоты
, где Δ S 1 – количество соударений молекул первого тела со вторым телом, а Θ 1 – это средняя энергия, которую молекула первого тела передаёт за одно столкновение второму телу. За это же время молекулы второго тела потеряют энергию
. Здесь Δ S 2 – число элементарных актов взаимодействия (число ударов) молекул второго тела с первым телом, а Θ 2 - средняя энергия, которую молекула второго тела передаёт за один удар первому телу. Величина Θ в физике получила название температуры . Как показывает опыт, она связана со средней кинетической энергией молекул тел соотношением:

(2)

А теперь можно подвести итоги всех приведенных выше рассуждений. Какой же вывод мы должны сделать относительно физического содержания величины Θ ? Он, на наш взгляд, совершенно очевиден.

тела передаёт другому макроскопическому объекту за одно

соударение с этим объектом.

Как следует из формулы (2) температура – это энергетический параметр, значит, единицей измерения температуры в системе СИ является джоуль. Так, что строго говоря, Вы должны жаловаться примерно так: «Похоже, вчера я простудился, голова болит, и температура – аж 4,294·10 -21 Дж!» Не правда ли, непривычная единица измерения температуры, да и величина какая-то уж слишком малая? Но не забывайте, что речь идет об энергии, которая составляет часть от средней кинетической энергией всего-то одной молекулы!

На практике температуру измеряют в произвольно выбранных единицах : флорентах, кельвинах, градусах Цельсия, градусах Ранкина, градусах Фаренгейта и т.д. (Могу же я определить длину не в метрах, а в кабельтовых, саженях, шагах, вершках, футах и т.п. Помнится, в одном из мультфильмов длину удава считали даже в попугаях!)

Для измерения температуры необходимо использовать некоторый датчик, который следует привести в контакт с исследуемым предметом , Этот датчик мы будем называть термометрическим телом . Термометрическое тело должно обладать двумя свойствами. Во-первых, это оно должно быть значительно меньше исследуемого объекта (правильней сказать, теплоемкость термометрического тела должна быть много меньше теплоемкости исследуемого предмета). Вы никогда не пробовали измерить температуру, скажем, комара с помощью обычного медицинского градусника? А Вы попробуйте! Что, ничего не получается? Все дело в том, что в процессе теплообмена насекомое не сможет изменить энергетическое состояние градусника, так как суммарная энергия молекул комара ничтожно мала по сравнению с энергией молекул градусника .

Ну, ладно, возьму маленький предмет, к примеру, карандаш, и с его помощью попробую измерить свою температуру. Опять что-то не ладится... А причина неудачи заключается в том, что термометрическое тело должно обладать ещё одним обязательным свойством: при контакте с исследуемым объектом в термометрическом теле должны происходить изменения, которые можно зарегистрировать визуально, либо с помощью приборов.

Присмотритесь, как устроен обычный бытовой термометр. Его термометрическое тело - маленький сферический сосуд, соединенный с тонкой трубкой (капилляром). Сосуд заполняется жидкостью (чаще всего ртутью или подкрашенным спиртом). При контакте с горячим или холодным предметом жидкость изменяет свой объём, и соответственно изменяется высота столбика в капилляре. Но для того, чтобы зарегистрировать изменения высоты столбика жидкости необходимо к термометрическому телу приладить ещё и шкалу. Прибор, содержащий термометрическое тело и выбранную определенным образом шкалу, называется термометром . Наибольшее распространение в настоящее время получили термометры со шкалой Цельсия и шалой Кельвина.

Шкала Цельсия устанавливается по двум репéрным (опорным) точкам. Первым репером является тройная точка воды – такие физические условия, при которых три фазы воды (жидкость, газ, твердое тело) находятся в равновесии . Это значит, что масса жидкости, масса кристаллов воды и масса водяных паров остаются при этих условиях неизменными. В такой системе, конечно же, идут процессы испарения и конденсации, кристаллизации и плавления, но они уравновешивают друг друга. Если не нужна очень высокая точность измерения температуры (например, при изготовлении бытовых термометров), первую реперную точку получают, помещая термометрическое тело в тающий при атмосферном давлении снег или лёд. Второй реперной точкой является условия, при которых жидкая вода находится в равновесии со своим паром (проще сказать, точка кипения воды) при нормальном атмосферном давлении. На шкале термометра делаются отметки, соответствующие реперным точкам; интервал между ними делится на сто частей. Одно деление выбранной таким образом шкалы называется градусом Цельсия (˚C). Тройная точка воды принимается за 0 градусов шкалы Цельсия.

Шкала Цельсия получила наибольшее практическое применение в мире; к сожалению, она имеет ряд существенных недостатков. Температура по этой шкале может принимать отрицательные значения, между тем кинетическая энергия и соответственно температура могут быть только положительными. Кроме того, показания термометров со шкалой Цельсия (за исключением реперных точек) зависят от выбора термометрического тела.

Шкала Кельвина лишена недостатков шкалы Цельсия. В качестве рабочего вещества в термометрах со шкалой Кельвина должен использоваться идеальный газ. Шкала Кельвина также устанавливается по двум реперным точкам. Первой реперной точкой являются такие физические условия, при которых прекращается тепловое движение молекул идеального газа. Эта точка принимается в шкале Кельвина за 0. Второй реперной точкой является тройная точка воды. Интервал между реперными точками разделен на 273,15 части. Одно деление выбранной таким образом шкалы называют кельвином (К). Число делений 273,15 выбрано по тем соображениям, чтобы цена деления шкалы Кельвина совпадала с ценой деления шкалы Цельсия, тогда изменение температуры по шкале Кельвина совпадает с изменением температуры по шкале Цельсия; тем самым облегчается переход от показаний одной шкалы к другой. Температура по шкале Кельвина обозначается обычно буквой Т . Связь между температурами t в шкале Цельсия и температурой Т , измеренной в кельвинах, устанавливается соотношениями

и
.

Для перехода от температуры Т , измеренной в К, к температуре Θ в джоулях служит постоянная Больцмана k =1.38·10 -23 Дж/К, она показывает, сколько джоулей приходится на 1 К:

Θ = kT .

Некоторые умники пытаются найти какой-то тайный смысл в постоянной Больцмана; между тем k – самый заурядный коэффициент для пересчёта температуры из кельвинов в джоули.

Обратим внимание читателя на три специфические особенности температуры. Во-первых, она является усреднённым (статистическим) параметром ансамбля частиц. Представьте себе, что вы решили найти средний возраст людей на Земле. Для этого заходим в детский садик , суммируем возраст всех ребятишек и делим эту сумму на число детей. Оказывается, что средний возраст людей на Земле – 3.5 года! Вроде считали-то правильно, а результат получили нелепый. А всё дело в том, что в статистике надо оперировать громадным количеством объектов или событий. Чем выше их количество (в идеале оно должно быть бесконечно большим), тем точней будет значение среднестатистического параметра. Потому понятие температуры применимо только к телам, содержащим громадное количество частиц. Когда журналист в погоне за сенсацией сообщает, что температура частиц, падающих на космический корабль, равна нескольким миллионам градусов, родственникам космонавтов не надо падать в обморок: с кораблем ничего страшного не происходит: просто малограмотный работник пера выдает энергию небольшого количества космических частиц за температуру. А вот если корабль, направляясь на Марс, сбился бы с курса и приблизился бы к Солнцу, тогда – беда: число частиц, бомбардирующий корабль громадное, а температура солнечной короны – 1,5 миллиона градусов.

Во-вторых, температура характеризует тепловое, т.е. неупорядочное движение частиц. В электронном осциллографе картинка на экране рисуется узким, сфокусированным в точку, потоком электронов. Эти электроны проходят некоторую одинаковую разность потенциалов и приобретают примерно одинаковую скорость. Для такого ансамбля частиц грамотный специалист указывают их кинетическую энергию (к примеру, 1500 электрон-вольт), которая, конечно же, не является температурой этих частиц.

Наконец, в-третьих, заметим, что передача теплоты от одного тела к другому может осуществляться не только за счет непосредственного столкновения частиц этих тел, но и за счет поглощения энергии в виде квантов электромагнитного излучения (этот процесс происходит, когда Вы загораете на пляже). Поэтому более общее и точное определение температуры следует сформулировать так:

Температура тела (вещества, системы) – физическая величина, численно равная усреднённой энергии, которую молекула этого

тела передаёт другому макроскопическому объекту за один

элементарный акт взаимодействия с этим объектом .

В заключение, вернёмся к определениям, о которых шла речь в начале этой статьи. Из формулы (2) следует, что если известна температура вещества, то можно однозначно определить среднюю энергию частиц вещества. Таким образом, температура действительно является мерой средней энергии теплового движения молекул или атомов (заметим, кстати, что среднюю энергию частиц определить непосредственно в эксперименте невозможно). С другой стороны кинетическая энергия пропорциональна квадрату скорости; значит, чем больше температура, тем выше скорости молекул, тем интенсивнее их движение. Следовательно, температура является мерилом интенсивности теплового движения частиц. Определения эти, безусловно, приемлемые, но носят они уж слишком общий, чисто качественный характер.

Температура (в физике)

Температура (от лат. temperatura ≈ надлежащее смешение, соразмерность, нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Т. одинакова для всех частей изолированной системы, находящейся в равновесии термодинамическом. Если изолированная система не находится в равновесии, то с течением времени переход энергии (теплопередача) от более нагретых частей системы к менее нагретым приводит к выравниванию Т. во всей системе (первый постулат, или нулевое начало термодинамики). Т. определяет: распределение образующих систему частиц по уровням энергии (см. Больцмана статистика) и распределение частиц по скоростям (см. Максвелла распределение); степень ионизации вещества (см. Саха формула); свойства равновесного электромагнитного излучения тел ≈ спектральную плотность излучения (см. Планка закон излучения), полную объёмную плотность излучения (см. Стефана ≈ Больцмана закон излучения) и т. д. Т., входящую в качестве параметра в распределение Больцмана, часто называют Т. возбуждения, в распределение Максвелла ≈ кинетической Т., в формулу Саха ≈ ионизационной Т., в закон Стефана ≈ Больцмана ≈ радиационной температурой. Поскольку для системы, находящейся в термодинамическом равновесии, все эти параметры равны друг другу, их называют просто температурой системы. В кинетической теории газов и др. разделах статистической механики Т. количественно определяется так, что средняя кинетическая энергия поступательного движения частицы (обладающей тремя степенями свободы) равнакТ, где k ≈ Больцмана постоянная, Т ≈ температура тела. В общем случае Т. определяется как производная от энергии тела в целом по его энтропии. Такая Т. всегда положительна (поскольку кинетическая энергия положительна), её называют абсолютной Т. или Т. по термодинамической температурной шкале. За единицу абсолютной Т. в Международной системе единиц (СИ) принят кельвин (К). Часто Т. измеряют по шкале Цельсия (t), значения t связаны с Т равенством t = Т √ 273,15 К (градус Цельсия равен Кельвину). Методы измерения Т. рассмотрены в статьях Термометрия, Термометр.

Строго определённой Т. характеризуется лишь равновесное состояние тел. Существуют, однако, системы, состояние которых можно приближённо охарактеризовать несколькими не равными друг другу температурами. Например, в плазме, состоящей из лёгких (электроны) и тяжёлых (ионы) заряженных частиц, при столкновении частиц энергия быстро передаётся от электронов к электронам и от ионов к ионам, но медленно от электронов к ионам и обратно. Существуют состояния плазмы, в которых системы электронов и ионов в отдельности близки к равновесию, и можно ввести Т. электронов Тэ и Т. ионов Ти, не совпадающие между собой.

В телах, частицы которых обладают магнитным моментом, энергия обычно медленно передаётся от поступательных к магнитным степеням свободы, связанным с возможностью изменения направления магнитного момента. Благодаря этому существуют состояния, в которых система магнитных моментов характеризуется Т., не совпадающей с кинетической Т., соответствующей поступательному движению частиц. Магнитная Т. определяет магнитную часть внутренней энергии и может быть как положительной, так и отрицательной (см. Отрицательная температура). В процессе выравнивания Т. энергия передаётся от частиц (степеней свободы) с большей Т. к частицам (степеням свободы) с меньшей Т., если они одновременно положительны или отрицательны, но в обратном направлении, если одна из них положительна, а другая отрицательна. В этом смысле отрицательная Т. «выше» любой положительной.

Понятие Т. применяют также для характеристики неравновесных систем (см. Термодинамика неравновесных процессов). Например, яркость небесных тел характеризуют яркостной температурой, спектральный состав излучения ≈ цветовой температурой и т. д.

Температура - это просто!

Температура

Температура - это мера средней кинетической энергии молекул.
Температура характеризует степень нагретости тел.

Прибор для измерения температуры - термометр.
Принцип действия термометра:
При измерении температуры используется зависимость изменения какого-либо макроскопического параметра (объема, давления, электрического сопротивления и т.д.) вещества от температуры.
В жидкостных термометрах - это изменение объема жидкости.
При контакте двух сред происходит передача энергии от более нагретой среды менее нагретой.
В процессе измерения температура тела и термометра приходят в состояние теплового равновесия.

Жидкостные термометры

На практике часто используются жидкостные термометры: ртутные (в диапазоне от -35 o С до +750 o С) и спиртовые (от -80 o С до +70 o С).
В них используется свойство жидкости изменять свой объем при изменении температуры.
Однако, у каждой жидкости существуют свои особенности изменения объема (расширения) при различных температурах.
В результате сравнения, например, показаний ртутного и спиртового термометров, точное совпадение будет только лишь в двух точках (при температурах 0 o С и 100 o С).
Этих недостатков лишены газовые термометры.

Газовые термометры

Первый газовый термометр был создан французским физиком Ж. Шарлем.

Преимущества газового термометра:
- используется линейная зависимость изменения объема или давления газа от температуры, которая справедлива для всех газов
- точность измерения от 0,003 o С до 0,02 o С
- интервал температур от -271 o С до +1027 o С.

Тепловое равновесие

При соприкосновении двух тел различной температуры происходит передача внутренней энергии от более нагретого тела менее нагретому, и температуры обоих тел выравниваются.
Наступает состояние теплового равновесия, при котором все макропараметры (объем, давление, температура) обоих тел остаются в дальнейшем неизменными при неизменных внешних условиях.

Тепловым равновесием называется такое состояние, при котором все макроскопические параметры остаются неизменными сколь угодно долго.
Состояние теплового равновесия системы тел характеризуется температурой: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.
Установлено, что при тепловом равновесии средние кинетические энергии поступательного движения молекул всех газов одинаковы, т.е.

Для разреженных (идеальных) газов величина

и зависит только от температуры, тогда

где k - постоянная Больцмана

Эта зависимость дает возможность ввести новую температурную шкалу абсолютную шкалу температур, не зависящую от вещества, используемого для измерения температуры.

Абсолютная шкала температур

Введена английским физиком У. Кельвином
- нет отрицательных температур

Единица абсолютной температуры в СИ: [T] = 1K (Кельвин)
Нулевая температура абсолютной шкалы - это абсолютный ноль (0К = -273 o С), самая низкая температура в природе. В настоящее время достигнута самая низкая температура - 0,0001К.
По величине 1К равен 1 o C.


Связь абсолютной шкалы со шкалой Цельсия

Запомни! В формулах абсолютная температура обозначается буквой «Т», а температура по шкале Цельсия буквой «t».

После введения абсолютной температуры получаем новые выражения для формул:

Средняя кинетическая энергия поступательного движения молекул

Давление газа - основное уравнение МКТ

Средняя квадратичная скорость молекул

Из уравнения (2.4)

следует, что давление идеального газа пропорционально его плотности (плотность газа определяется числом молекул в единице объема) и средней кинетической энергии поступательного движения молекул. При неизменном а значит, при неизменном объеме V газа где число молекул в сосуде) давление газа зависит только от средней кинетической энергии молекул.

Между тем из опыта известно, что при постоянном объеме давление газа можно изменять только одним способом: его нагреванием или охлаждением; при нагревании газа его давление растет, при охлаждении уменьшается. Нагретый же и охлажденный газ, как и всякое тело, характеризуется своей температурой - особой величиной, которой издавна пользуются в науке, технике и в быту. Следовательно, между температурой и средней кинетической энергией молекул должна существовать связь.

Прежде чем мы выясним эту связь, посмотрим, что представляет собой температура как физическая величина.

В повседневной жизни температура для нас - величина, которая отличает «горячее» от «холодного». И первые представления о температуре возникли из ощущений тепла и холода. Мы можем использовать эти знакомые нам ощущения, чтобы выяснить главную особенность температуры как физической величины.

Возьмем три сосуда. В один из них нальем горячую воду, в другой - холодную, а в третий - смесь горячей и холодной воды. Опустим одну руку, например правую, в сосуд с горячей водой, а левую - в сосуд с холодной. Подержав руки некоторое время в этих сосудах, перенесем их в третий сосуд. Что скажут нам наши ощущения о воде в этом сосуде? Правой руке покажется, что вода

в нем холодная, а левой - что она теплая. Но это «разноречие» исчезнет, если подержать обе руки в третьем сосуде подольше. Через некоторое время обе руки станут испытывать совершенно одинаковые ощущения, соответствующие температуре воды в третьем сосуде.

Все дело в том, что руки, побывавшие сначала в сосудах с горячей и холодной водой, имели различные температуры, отличные и одна от другой, и от температуры в третьем сосуде. И требуется некоторое время, чтобы температура каждой из рук стала равной температуре воды, в которую они погружены. Тогда и температуры рук станут одинаковы. Одинаковы будут и ощущения. Необходимо, как говорят, чтобы в системе тел «правая рука - левая рука - вода» установилось тепловое равновесие.

Этот простой опыт показывает, что температура - это величина, характеризующая состояние теплового равновесия: у тел, находящихся в состоянии теплового равновесия, температуры одинаковы. И наоборот, тела с одинаковой температурой находятся в тепловом равновесии друг с другом. А если два тела находятся в тепловом равновесии с каким-нибудь третьим телом, то оба тела находятся в тепловом равновесии и между собой. Это важное утверждение является одним из основных законов природы. И на нем основана сама возможность измерения температуры. В описанном опыте, например, шла речь о тепловом равновесии обеих рук, после того как каждая из них оказалась в тепловом равновесии с водой.

Если тело или система тел не находится в состоянии теплового равновесия и если система изолирована (не взаимодействует с другими телами), то через некоторое время состояние теплового равновесия устанавливается само собой. Состояние теплового равновесия - это и есть состояние, в которое переходит любая изолированная система. После того как такое состояние достигнуто, оно уже больше не изменяется и никакие макроскопические изменения в системе не происходят. Одним из признаков состояния теплового равновесия и является равенство температур всех частей тела или всех тел системы. Известно, что в процессе установления теплового равновесия, т. е. при выравнивании температуры двух тел, происходит передача теплоты от одного тела другому. Следовательно, с экспериментальной точки зрения температура тела - это величина, которая определяет, будет ли оно другому телу с иной температурой передавать тёплоту или получать от него теплоту.

Температура занимает несколько особое место в ряду физических величин. Это и не удивительно, если учесть, что в ту эпоху, когда эта величина появилась в науке, не было известно, какие именно внутренние процессы в веществе вызывают ощущение тепла и холода.

Своеобразие температуры как физической величины состоит прежде всего в том, что она, в отличие от многих других величин,

не аддитивна. Это значит, что если мысленно разделить тело на части, то температура всего тела не равна сумме температур его частей. Этим температура отличается от таких, например, величин, как длина, объем, масса, значения которых для всего тела складываются из значений соответствующих величин для его частей.

Вследствие этого температуру тела нельзя измерять непосредственно, как измеряют длину или массу, т. е. методом сравнения с эталоном. Если об одном стержне можно сказать, что его длина во столько-то раз больше длины другого стержня, то вопрос о том, сколько раз одна температура содержится в другой, не имеет смысла.

Для измерения температуры издавна пользуются тем, что при изменении температуры тела изменяются и его свойства. Изменяются, следовательно, величины, характеризующие эти свойства. Поэтому для создания прибора, измеряющего температуру, т. е. термометра, выбирают какое-либо вещество (термометрическое вещество) и определенную величину, характеризующую свойство вещества (термометрическую величину). Выбор того и другого совершенно произволен. В бытовых термометрах, например, термометрическим веществом является ртуть, а термометрической величиной - длина ртутного столбика.

Для того чтобы величине температуры можно было сопоставить определенные числовые значения, нужно еще задаться той или иной зависимостью термометрической величины от температуры. Выбор этой зависимости тоже произволен: ведь пока нет термометра, нельзя опытным путем установить эту зависимость! В случае ртутного термометра, например, избирается линейная зависимость длины ртутного столбика (объема ртути) от температуры.

Остается еще установить единицу температуры - градус (хотя в принципе ее можно было бы выражать в тех же единицах, в которых измеряется термометрическая величина, например по ртутному термометру - в сантиметрах!). Величина градуса избирается тоже произвольно (как и термометрическое вещество, термометрическая величина и вид функции, связывающей термометрическую величину с температурой). Размер градуса устанавливается следующим образом. Выбирают, опять-таки произвольно, две температуры (их называют реперными точками) - обычно это температуры таяния льда и кипения воды при атмосферном давлении - и делят этот температурный интервал на некоторое (тоже произвольное) число равных частей - градусов, а одной из этих двух температур приписывают определенное числовое значение. Тем самым определяется значение второй температуры и любой промежуточной. Таким образом получают температурную шкалу. Понятно, что с помощью описанной процедуры можно получить бесчисленное множество различных термометров и температурных шкал,

Современная термометрия основана на шкале идеального газа, устанавливаемой с помощью газового термометра. В принципе газовый термометр - это закрытый сосуд, наполненный идеальным газом и снабженный манометром для измерения давления газа. Значит термометрическим веществом в таком термометре служит идеальный газ, а термометрической величиной - давление газа при постоянном объеме. Зависимость давления от температуры принимается (именно принимается!) линейной. Такое допущение приводит к тому, что отношение давлений при температурах кипения воды и таяния льда равно отношению самих этих температур:

Отношение легко определить из опыта. Многочисленные измерения показали, что

Таково, следовательно, и значение отношения температур:

Размер градуса выбирается делением разности на сто частей:

Из последних двух равенств следует, что температура таяния льда по выбранной нами шкале равна 273,15 градусов, а температура кипения воды Тк равна 373,15 градусов. Для того чтобы при помощи газового термометра измерить температуру какого-нибудь тела, надо привести тело в контакт с газовым термометром и, дождавшись равновесия, измерить давление газа в термометре. Тогда температура тела определяется по формуле

где давление газа в термометре, помещенном в тающий лед.

В практике газовым термометром пользуются крайне редко. На него возложена более ответственная роль - по нему градуируются все употребляемые термометры.

Температура, равная нулю в нашей шкале, - это, очевидно, температура, при которой давление идеального газа было бы равно нулю. (Это не значит, что идеальный газ в самом деле можно настолько охладить, что его давление станет равным нулю.) Если при нуле температурной шкалы термометрическая величина обращается в нуль, то такая шкала называется абсолютной шкалой, а температура, отсчитанная по такой шкале, называется абсолютной температурой. Описанная здесь шкала газового термометра является абсолютной. Ее часто называют также шкалой Кельвина,

а единицу температуры в этой шкале - градусом Кельвина или просто кельвином (обозначение: К).

В технике и быту часто используется температурная шкала, отличающаяся от описанной тем, что температуре таяния льда приписывается значение нуль (при том же размере градуса). Эта шкала называется шкалой Цельсия. Температура отсчитываемая по этой шкале, связана с абсолютной температурой очевидным соотношением:

Мы в дальнейшем будем пользоваться шкалой Кельвина.

Из того, что здесь было сказано, следует, что температура характеризует тепловое равновесие тел: при переходе к состоянию равновесия температуры тел выравниваются, а в состоянии равновесия температура всех частей тела или системы тел одна и та же, С этим связана сама процедура измерения температуры. Ведь для того, чтобы измерить значение термометрической величины при температурах таяния льда и кипения воды, термометр необходимо привести в состояние равновесия с тающим льдом и с кипящей водой, а чтобы измерить температуру какого-нибудь тела, необходимо обеспечить возможность установления теплового равновесия между термометром и телом. И только тогда, когда такое равновесие достигнуто, можно считать, что температура тела равна температуре, отсчитанной по термометру.

Итак, температура - это то, что выравнивается в процессе установления равновесия в системе. Но само понятие выравнивания означает, что от одной части системы что-то передается к другой. Полученное нами уравнение (2.4) для давления идеального газа позволит нам понять, что представляет собой это «что-то».

Представим себе изолированный цилиндр с идеальным газом, в котором уже установилось тепловое равновесие, так что температура во всех частях объема газа одинакова. Допустим, что, без нарушения равновесия, в цилиндр помещен подвижный поршень, разделяющий объем газа на две части (рис. 3, а). В условиях равновесия поршень будет находиться в покое. Это значит, что при равновесии не только температуры, но и давления по обе стороны поршня одинаковы. Согласно уравнению (2.4) одинаковы и величины

Нарушим теперь временно изоляцию нашего цилиндра с газом и нагреем одну из его частей, например ту, что по левую сторону от поршня, после чего снова восстановим изоляцию. Теперь газ в цилиндре не находится в равновесии - температура в левом отделении выше, чем в правом (рис. 3, б). Но газ изолирован, и сам собой начнется переход к состоянию равновесия. При этом мы увидим, что поршень начнет двигаться слева направо. А это значит, что совершается работа и, следовательно, от газа в левом отделении газу в правом через поршень передается энергия. Значит, то, что передается в процессе установления теплового равновесия, - это энергия. Через некоторое время движение поршня прекратится. Но остановится поршень после ряда колебаний. И остановится он в том же самом месте, где он находился до того, как левое отделение цилиндра подверглось нагреванию. В цилиндре с газом вновь установилось состояние равновесия. Но теперь температура газа и его давление, конечно, выше, чем до нагревания.

Так как поршень, остановился на прежнем месте, то концентрация молекул (т. е. число молекул в единице объема) осталась прежней. Это значит, что в результате нагревания газа изменилась только средняя кинетическая энергия его молекул. Выравнивание температуры, следовательно, означает выравнивание значений средней кинетической энергии молекул по обе стороны поршня. При переходе к равновесию от одной части газа к другой передается энергия, но выравнивается не энергия всего газа как целого, а средняя кинетическая энергия, отнесенная к одной молекуле. Именно средняя кинетическая энергия молекулы ведет себя как температура.

Эти две величины сходны еще и тем, что средняя кинетическая энергия, как и температура, - величина не аддитивная, она одинакова для всего газа и для любой его части (содержащей достаточно большое число молекул). Энергия же всего газа - величина, конечно, аддитивная, - она складывается из энергий его частей.

Не следует думать, что наши рассуждения относятся только к случаю, когда газ в цилиндре разделен на две части поршнем. И без поршня молекулы при столкновениях между собой обменивались бы энергией и она передавалась бы от более нагретой части к менее нагретой, в результате чего выравнялись бы средние кинетические энергии молекул. Поршень лишь делает передачу энергии как бы видимой, так как его движение связано с совершением работы.

Приведенные простые, хотя и не очень строгие рассуждения показывают, что величина, давно известная под названием температуры, в действительности представляет собой среднюю кинетическую энергию поступательного движения молекул. То, что мы получили этот результат для случая идеального газа, не меняет

В применении к идеальному газу удобнее считать, что температура равна двум третям средней кинетической энергии молекул, гак как это упростит вид формулы (2.4) для давления газа. Обозначив определенную таким образом температуру буквой мы можем написать:

Тогда уравнение (2.4) примет простой вид:

При таком определении температуры она, очевидно, должна измеряться в единицах энергии (в системе СИ - в джоулях, в системе единиц СГС - в эргах). Однако практически пользоваться такой единицей температуры неудобно. Даже такая малая единица энергии, как слишком велика, чтобы служить единицей измерения температуры. При пользовании ею обычно встречающиеся температуры выражались бы ничтожно малыми числами. Например, температура таяния льда равнялась бы . К тому же и измерение температуры, выражаемой в эргах, было бы очень затруднительно.

По этой причине, а также потому, что величиной температуры пользовались еще задолго до того, как были развиты молекулярно-кинетические представления, разъяснившие истинный смысл температуры, ее все-таки измеряют в старых единицах - градусах, несмотря на условность этой единицы.

Но если измерять температуру в градусах, то необходимо ввести соответствующий коэффициент, переводящий единицы энергии и градусы. Его принято обозначать буквой Тогда связь между температурой измеряемой в градусах, и средней кинетической энергией выражается равенством:

Напомним, что формула (3.1) относится к молекуле, которую мы условились считать подобной точке. Ее кинетическая энергия - это кинетическая энергия поступательного движения, скорость которого может быть разложена на три составляющие. Вследствие хаотичности молекулярныхдвижений можно принять, что энергия

молекулы равномерно распределяется по всем трем составляющим скорости, так что на каждую из них приходится энергия

Множитель выражающий соотношение между единицей энергии и единицей температуры - кельвином, называется постоянной Больцмана. Понятно, что его числовое значение должно быть установлено экспериментально. Ввиду особой важности этой постоянной она была определена многими методами. Приводим наиболее точное к настоящему времени значение этой постоянной. В системе единиц СИ

В системе единиц СГС

Из формулы (3.1) следует, что нулем температуры является температура, при которой средняя кинетическая энергия беспорядочных движений молекул равна нулю, т. е. температура, при которой хаотические движения молекул прекращаются. Это и есть тот абсолютный нуль, начало отсчета абсолютной температуры, о котором упоминалось выше.

Из формулы (3,1) вытекает также, что отрицательных температур быть не может, так как кинетическая энергия - существенно положительная величина. Впрочем, ниже, в гл. VI, будет показано, что для определенных систем можно формально ввести понятие об отрицательных температурах. О них, правда, нельзя будет сказать, что это температуры ниже абсолютного нуля и что они относятся к равновесному состоянию системы.

Так как температура определяется средней энергией движения молекул, то она, как и давление, является статистической величиной. Нельзя говорить о «температуре» одной или немногих молекул, о «горячих» или «холодных» молекулах. Не имеет смысла, например, говорить о температуре газа в космическом пространстве, где число молекул в единице объема настолько мало, что они не образуют газа в обычном смысле слова и нельзя говорить о средней энергии движения молекул.

Энергии, связанные с хаотическими движениями частиц газа, очень малы. Из формулы (3.1) и из приведенного значения постоянной Больцмана видно, что температуре в 1 К соответствует энергия, равная При наинизшей достигнутой к настоящему времени температуре (порядка 10 6 К) средняя энергия молекул равна приблизительно 109 джоуля. Даже наивысшей искусственно полученной температуре - около 100 миллионов градусов, развивающейся при взрыве ядерной бомбы, - соответствует ничтожная энергия частиц джоуля.

Ввиду того, что температура играет очень важную роль в физике и технике, она входит наряду с длиной, массой и временем в число основных величин системы единиц СИ, а единица температуры, кельвин, входит в число основных единиц этой системы (размерность температуры обозначается буквой в).

В СИ единица температуры (кельвин) устанавливается не на основе температурного интервала «температура тающего льда - температура кипящей воды», а на основе интервала «абсолютный нуль - температура тройной точки воды». Тройная точка воды - это температура, при которой вода, водяной пар и лед находятся в равновесии (см. § 130). Температуре тройной точки воды приписывается значение 273,16 К (точно).

Таким образом, 1 кельвин равен части температурного интервала от абсолютного нуля температуры до температуры тройной точки воды.

Так как температура тройной точки воды равна 0,01 °С, то размерыградуса в шкалах Цельсия и Кельвина одинаковы и любая температура может выражаться либо в градусах Цельсия либо в кельвинах

ТЕМПЕРАТУРА И ЕЁ ИЗМЕРЕНИЕ.

ЭКСПЕРИМЕНТАЛЬНЫЕ ГАЗОВЫЕ ЗАКОНЫ.

1.Тепловое равновесие. Температура.

Температура – это физическая величина, характеризующая степень нагретости тела. Если два тела разной температуры привести в соприкосновение, то, как показывает опыт, более нагретое тело будет охлаждаться, а менее нагретое – нагреваться, т.е. происходит теплообмен – передача энергии от более нагретого тела к менее нагретому без совершения работы.

Энергия, передаваемая при теплообмене, называется количеством теплоты .

Через некоторое время после приведения тел в соприкосновение они приобретают одинаковую степень нагретости, т.е. приходят в состояние теплового равновесия .

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором теплообмен не происходит и все макропараметры тел остаются неизменными, если внешние условия не меняются.

При этом два параметра – объём и давление – могут быть различными для разных тел системы, а третий, температура, в случае теплового равновесия одинаков для всех тел системы. На этом основано определение температуры.

Физический параметр, одинаковый для всех тел системы, находящихся в состоянии теплового равновесия, называется температурой этой системы.

Например, система состоит из двух сосудов с газом. Приведём их в соприкосновение. Объём и давление газа в них могут быть различными, а температура в результате теплообмена станет одинаковой.

2.Измерение температуры.

Для измерения температуры используют физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо параметра.

Для создания термометра необходимо:

    Выбрать термометрическое вещество, параметры (характеристики) которого изменяются при изменении температуры (например, ртуть, спирт и т.д.);

    Выбрать термометрическую величину, т.е. величину, которая изменяется с изменением температуры (например, высота ртутного или спиртового столбика, величина электрического сопротивления и т.д.);

    Откалибровать термометр, т.е. создать шкалу, по которой будет производиться отсчёт температуры. Для этого термометрическое тело приводится в тепловой контакт с телами, температуры которых постоянны. Например, при построении шкалы Цельсия температура смеси воды и льда в состоянии плавления принимается за 00С, а температура смеси водяного пара и воды в состоянии кипения при давлении 1 атм. – за 1000С. Отмечается положение столбика жидкости в обоих случаях, а затем расстояние между полученными метками делится на 100 делений.

При измерении температуры термометр приводят в тепловой контакт с телом, температура которого измеряется, и после того, как установится тепловое равновесие (показания термометра перестанут меняться), считывается показание термометра.

3.Экспериментальные газовые законы.

Параметры, описывающие состояние системы, взаимозависимы. Установить зависимость друг от друга сразу трёх параметров сложно, поэтому немного упростим задачу. Рассмотрим процессы, при которых

а) количество вещества (или масса) постоянно, т.е. ν=const (m=const);

б) значение одного из параметров фиксировано, т.е. постоянно либо давление, либо объём, либо температура.

Такие процессы называются изопроцессами .

1).Изотермический процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянной температуре.

Исследован Бойлем (1662 г.) и Мариоттом (1676 г.).

Упрощённая схема опытов такова. Рассмотрим сосуд с газом, закрытый подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа.

Опыт показал, что произведение давления на объём газа при постоянной температуре есть величина постоянная. Это значит

PV = const

Закон Бойля-Мариотта .

Объём V данного количества газа ν при постоянной температуре t0 обратно пропорционален его давлению, т.е. .

Графики изотермических процессов.

График зависимости давления от объёма при постоянной температуре называется изотермой. Чем больше температура, тем выше на графике располагается изотерма.

2).Изобарный процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном давлении.

Исследован Гей-Люссаком (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на котором установлен грузик, уравновешивающий давление газа. Сосуд с газом нагревается.

Опыт показал, что при нагревании газа при постоянном давлении его объём изменяется по следующему закону: где V 0 – объём газа при температуре t0 = 00C; V – объём газа при температуре t0, α v – температурный коэффициент объёмного расширения,

Закон Гей-Люссака .

Объём данного количества газа при постоянном давлении линейно зависит от температуры.

Графики изобарных процессов.

График зависимости объёма газа от температуры при постоянном давлении называется изобарой.

Если экстраполировать (продолжить) изобары в область низких температур, то все они сойдутся в точке, соответствующей температуре t0= - 2730С.

3).Изохорный процесс , т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном объёме.

Исследован Шарлем (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа. Сосуд нагревается.

Опыт показал, что при нагревании газа при постоянном объёме его давление изменяется по следующему закону: где P 0 – объём газа при температуре t0 = 00C; P – объём газа при температуре t0, α p – температурный коэффициент давления,

Закон Шарля .

Давление данного количества газа при постоянном объёме линейно зависит от температуры.

График зависимости давления газа от температуры при постоянном объёме называется изохорой.

Если экстраполировать (продолжить) изохоры в область низких температур, то все они сойдутся в точке, соответствующей температуре t0= - 2730С.

4.Абсолютная термодинамическая шкала.

Английский учёный Кельвин предложил переместить начало температурной шкалы влево на 2730 и назвать эту точку абсолютным нулём температуры. Масштаб новой шкалы такой же, как и у шкалы Цельсия. Новая шкала называется шкалой Кельвина или абсолютной термодинамической шкалой. Единица измерения – кельвин.

Нулю градусов Цельсия соответствует 273 К. Температура по шкале Кельвина обозначается буквой Т.

T = t 0 C + 273

t 0 C = T – 273

Новая шкала оказалась более удобной для записи газовых законов.

температура это:

температура ТЕМПЕРАТУ́РА -ы; ж. [лат. temperatura - правильное соотношение, нормальное состояние] 1. Величина, характеризующая тепловое состояние какого-л. тела, вещества. Умеренная, средняя т. Постоянная, комнатная т. Июльская, летняя т. Ночная, дневная т. Т. воды, воздуха. Т. плавления, кипения, замерзания какого-л. тела. Т. в комнате. Т. по Цельсию, по Фаренгейту. Т. ниже нуля. Колебания, изменения температуры. Повысить, понизить температуру. Нагреть, довести что-л. до какой-л. температуры. Следить за температурой. 2. Степень теплоты человеческого тела как показатель состояния здоровья. Повышенная, нормальная, пониженная т. Т. раненого. Сбить кому-л. температуру. Т. повышается. Т. скачет (разг.). У больного т. сорок градусов. Измерить температуру градусником, рукой, губами. 3. Разг. Повышенная степень теплоты тела как показатель нездоровья. У ребёнка т. У него нет температуры. Ходить с температурой на работу, работать с температурой. Температу́рка, -и; ж. Смягчит. (3 зн.). Как ваша т.? Температу́рный, -ая, -ое. Т-ые изменения. Т. режим электропечи. Т-ая кривая (график изменений цифровых показателей температуры). Т. шов (техн.; промежуток, щель между частями какой-л. конструкции, делающая безопасным расширение смежных частей при повышении температуры). Т. лист (лист, содержащий запись ежедневной температуры больного). * * * температу́ра (от лат. temperatura - надлежащее смешение, нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия системы. Температура всех частей изолированной системы, находящейся в равновесии, одинакова. Если система не находится в равновесии, то между её частями, имеющими различные температуры, происходит теплообмен. Более высокой температурой обладают те тела, у которых средняя кинетическая энергия молекул (атомов) выше. Измеряют температуры термометрами на основе зависимости какого-либо свойства тела (объёма, электрического сопротивления и т. п.) от температуры. Теоретически температура определяется на основе второго начала термодинамики как производная от энергии тела по его энтропии. Так определяемая температура всегда положительна, её называют абсолютной температурой или температурой по термодинамической температурной шкале (обозначается Т ). За единицу абсолютной температуры в СИ принят кельвин (К). Значения температур по шкале Цельсия (t , °C) связаны с абсолютной температурой соотношением t = Т - 273,15 К (1°C = 1°К). * * * ТЕМПЕРАТУРА ТЕМПЕРАТУ́РА (от лат. temperatura - надлежащее смешение, нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия системы. Температура всех частей изолированной системы, находящейся в равновесии, одинакова. Если система не находится в равновесии, то между ее частями, имеющими различную температуру, происходит теплообмен (см. ТЕПЛООБМЕН). Более высокой температурой обладают те тела, у которых средняя кинетическая энергия молекул (атомов) выше. Измеряют температуру термометрами на основе зависимости какого-либо свойства тела (объема, электрического сопротивления и т. п.) от температуры. Теоретически температура определяется на основе второго начала термодинамики (см. ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ)как производная от энергии тела по его энтропии. Так, определяемая температура всегда положительна, ее называют абсолютной температурой или температурой по термодинамической температурной шкале (см. ТЕРМОДИНАМИЧЕСКАЯ ТЕМПЕРАТУРНАЯ ШКАЛА)(обозначается Т). За единицу абсолютной температуры в СИ (см. СИ (система единиц)) принят кельвин (К). Значения температуры по шкале Цельсия (t , °С) связаны с абсолютной температурой соотношением t =T -273,15K (1 °С=1 К).

Энциклопедический словарь. 2009.

Понятие о температуре и о температурных шкалах

Средства измерения температуры

Лекция №7

Бесконтактные датчики положения механизмов

Наиболее распространены бесконтактные датчики положения следующих типов: индуктивные, генераторные, магнитогерконовые и фотоэлектронные. Указанные датчики не имеют механического контакта с подвижным объектом, положение которого контролируется.

Бесконтактные датчики положения обеспечивают высокое быстродействие и большую частоту включений механизма. Определенным недостатком этих датчиков является зависимость, их точности от изменения напряжения питания и температуры. В зависимости от требований выходным аппаратом этих устройств может быть как бесконтактны логический элемент, так и электрическое реле.

В схемах точной остановки электроприводов бесконтактные датчики могут использоваться как для подачи команды на переход к пониженной частоте вращения, так и для окончательной остановки.

· Термопара

· Термометр сопротивления

· Пирометр

Температурой называют величину, характеризующую тепловое состояние тела. Согласно кинетической теории температуру определяют как меру кинетической энергии поступательного движения молекул. Отсюда температурой называют условную статистическую величину, прямо пропорциональную средней кинетической энергии молекул тела.

«... мерилом температуры является не само движение, а хаотичность этого движения. Хаотичность состояния тела определяет его температурное состояние, и эта идея (которая впервые была разработана Больцманом), что определённое температурное состояние тела вовсе не определяется энергией движения, но хаотичностью этого движения, и является тем новым понятием в описании температурных явлений, которым мы должны пользоваться...» (П. Л. Капица)

В Международной системе единиц (СИ) термодинамическая температура входит в состав семи основных единиц и выражается в кельвинах. В состав производных величин СИ, имеющих специальное название, входит температура Цельсия, измеряемая в градусах Цельсия. На практике часто применяют градусы Цельсия из-за исторической привязки к важным характеристикам воды - температуре таяния льда (0° C) и температуре кипения (100° C).

t= Т-Т о (7.1),

где Т о =273,15 К;

t- температура в градусах Цельсия;

Т - температура в Кельвинах.

Температуру, выраженную в градусах Цельсия обозначают «°С».

По размеру единицы физической величины градус Цельсия равен Кельвину.

Температуру измеряют с помощью средств измерений, использующих различные термометрические свойства жидкостей, газов и твердых тел. К таким средствам измерений относятся:

Термометры расширения;

Термометры манометрические;

Термометры сопротивления с логометрами или мостами;

Термопары с милливольтметрами или потенциометрами;

Пирометры излучения.

Температуру измеряют контактным (с помощью термометров сопротивления, манометрических термометров и термометров термоэлектрических) и бесконтактным (с помощью пирометров) методами.

Следует помнить:

Наиболее высокая точность измерений температуры достигается при контактных методах измерений;

Бесконтактный метод служит для измерений высоких температур, где невозможно измерять контактными методами и не требуется высокой точности.

Измерительная система температур представляет собой совокупность термометрического преобразователя (датчика) и вторичного измерительного прибора.

Термометрический преобразователь - измерительный преобразователь температуры, предназначенный для выработки сигнала измерительной информации в форме, удобной для передачи дальнейшего преобразования, обработки или (и) хранения, но не поддающейся непосредственному восприятию наблюдением.

К термометрическим преобразователям относят:

Термометры сопротивления;

Термоэлектрические термометры (термопары);

Телескоп радиационного пирометра.

Таблица 1

Термометрическое свойство Наименование устройства Пределы длительного применения, 0С
Нижний Верхний
Тепловое расширение Жидкостные стеклянные термометры -190
Изменение давления Манометрические термометры -160
Изменение электрического сопротивления Электрические термометры сопротивления -200
Полупроводниковые термометры сопротивления -90
Термоэлектрические эффекты Термоэлектрические термометры (термопары) стандартизованные -50
Термоэлектрические термометры (термопары) специальные
Тепловое излучение Оптические пирометры
Радиационные пирометры
Фотоэлектрические пирометры
Цветовые пирометры

Вторичный измерительный прибор - средство измерений, преобразующее выходной сигнал термометрического преобразователя в численную величину.

В качестве вторичных измерительных приборов используют логометры, мосты, милливольтметры, автоматические потенциометры.

Методы и технические средства измерения температуры

1. Термометры расширения и термометры манометрические

Жидкостные стеклянные термометры.

Самые старые устройства для измерения температуры – жидкостные стеклянные термометры – используют термометрическое свойство теплового расширения тел. Действие термометров основано на различии коэффициентов теплового расширения термометрического вещества и оболочки, в которой она находится (термометрического стекла или реже кварца).

Жидкостный термометр состоит из стеклянного баллона, капиллярной трубки. Термометрическое вещество заполняет баллон и частично капиллярную трубку. Свободное пространство в капиллярной трубке заполняется инертным газом или может находиться под вакуумом. Выступающая за верхним делением шкалы часть капиллярной трубки служит для предохранения термометра о порчи при чрезмерном перегреве.

В качестве термометрического вещества чаще всего применяют химически чистую ртуть. Она не смачивает стекла и остается жидкой в широком интервале температур. Кроме ртути в качестве термометрического вещества в стеклянных термометрах применяются и другие жидкости, преимущественно органического происхождения. Например: метиловый и этиловый спирт, керосин, пентан, толуол, галлий, амальгама таллия.

Основные достоинства стеклянных жидкостных термометров – простота употребления и достаточно высокая точность измерения даже для термометров серийного изготовления. К недостаткам стеклянных термометров можно отнести: плохую видимость шкалы (если не применять специальной увеличительной оптики) и невозможность автоматической записи показаний, передачи показаний на расстояние и ремонта.

Стеклянные жидкостные термометры имеют весьма широкое применение и выпускаются следующих основных разновидностей:

1. технические ртутные, с вложенной шкалой, с погружаемой в измеряемую среду нижней частью, прямые и угловые;

2. лабораторные ртутные, палочные или с вложенной шкалой, погружаемые в измеряемую среду до отсчитываемой температурной отметки, прямые, небольшого наружного диаметра;

3. жидкостные термометры (не ртутные); 4. повышенной точности и образцовые ртутные термометры;

5. электроконтактные ртутные термометры с вложенной шкалой, с впаянными в капиллярную трубку контактами для разрывания (или замыкания) столбиком ртути электрической цепи;

6. специальные термометры, в том числе максимальные (медицинские и другие), минимальные, метеорологические и другого назначения.

Манометрические термометры

Действие манометрических термометров основано на использовании зависимости давления вещества при постоянном объеме от температуры. Замкнутая измерительная система манометрического термометра состоит из чувствительного элемента, воспринимающего температуру измеряемой среды, - металлического термобаллона, рабочего элемента манометра, измеряющего давление в системе, длинного соединительного металлического капилляра. При изменении температуры измеряемой среды давление в системе изменяется, в результате чего чувствительный элемент перемещает стрелку или перо по шкале манометра, отградуированного в градусах температуры.

Манометрические термометры подразделяют на три основных разновидности:

1. жидкостные, в которых вся измерительная система (термобаллон, манометр и соединительный капилляр) заполнены жидкостью;

2. конденсационные, в которых термобаллон заполнен частично жидкостью с низкой температурой кипения и частично – ее насыщенными парами, а соединительный капилляр и манометр – насыщенными парами жидкости или, чаще, специальной передаточной жидкостью;

3. газовые, в которых вся измерительная система заполнена инертным газом.

Достоинствами манометрических термометров являются сравнительная простота конструкции и применения, возможность дистанционного измерения температуры и возможность автоматической записи показаний. К недостаткам манометрических термометров относятся: относительно невысокая точность измерения (класс точности 1.6; 2.5; 4.0 и реже 1.0); небольшое расстояние дистанционной передачи показаний (не более 60 метров) и трудность ремонта при разгерметизации измерительной системы.

Манометрические термометры не имеют большого применения на тепловых электрических станциях. В промышленной теплоэнергетике они встречаются чаще, особенно в случаях, когда по условиям взрыво – или пожаробезопасности нельзя использовать электрические методы дистанционного измерения температуры.

2. Термоэлектрические термометры

Для измерения температуры в металлургии наиболее широкое распространение получили термоэлектрические термометры, работающие в интервале температур от -200 до +2500 0C и выше. Данный тип устройств характеризует высокая точность и надежность, возможность использования в системах автоматического контроля и регулирования параметра, в значительной мере определяющего ход технологического процесса в металлургических агрегатах.

Сущность термоэлектрического метода заключается в возникновении ЭДС в проводнике, концы которого имеют различную температуру. Для того, чтобы измерить возникшую ЭДС, ее сравнивают с ЭДС другого проводника, образующего с первым термоэлектрическую пару AB, в цепи которой потечет ток.

Термо-ЭДС данной пары зависит только от температуры t 1 и t 2 и не зависит от размеров термоэлектродов (длины, диаметра), величин теплопроводности и удельного электросопротивления.

Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t 2 , свободные при известной и постоянной температуре t 1 .

Устройство термоэлектрических термометров

Термоэлектрический термометр (ТТ) – это измерительный преобразователь, чувствительный элемент которого (термопара) расположен в специальной защитной арматуре, обеспечивающий защиту термоэлектродов от механических повреждений и воздействия измеряемой среды. Арматура включает защитный чехол, и головку, внутри которой расположено контактное устройство с зажимами для соединения термоэлектродов с проводами, идущими от измерительного прибора к термометру. Термоэлектроды по всей длине изолированы друг от друга и от защитной арматуры керамическими трубками.

В качестве термоэлектродов используется проволока диаметром 0.5 мм (благородные металлы) и до 3 мм (неблагородные металлы). Спай на рабочем конце термопары образуется сваркой, пайкой или скручиванием. Последний способ используется для вольфрам-рениевых и вольфрам-молибденовых термопар.

Стандартные и нестандартные термоэлектрические термометры

Для измерения в металлургии наиболее широко применяются ТТ со стандартной градуировкой: платинородий-платиновые (ТПП), платинородий- платинородиевые (ТПР), хромель-алюмелевые (ТХА), хромель-капелевые (ТХК), вольфрамрений-вольфрамрениевые (ТВР). В ряде случаев используют также ТТ с нестандартной градуировкой: медь-константановые, вольфрам-молибденовые (ТВР) и др.

В условиях длительной эксплуатации при высоких температурах и агрессивном воздействии сред появляется нестабильность градуировочной характеристики, которая является следствием ряда причин: загрязнения материалов термоэлектродов примесями из защитных чехлов, керамических изоляторов и атмосферы печи; испарения одного из компонентов сплава; взаимной диффузии через спай. Величина отклонения может быть значительной и резко увеличивается с ростом температуры и длительностью эксплуатации. Указанные обстоятельства необходимо учитывать при оценке точности измерения температуры в производственных условиях.

Поверка технических ТТ

Поверка ТТ сводится к определению температурной зависимости термо-ЭДС и сравнению полученной градуировки со стандартными значениями.

Градуировка производится двумя методами: по постоянным точкам или сличениям.

Градуировка по постоянным (реперным) точкам является наиболее точной и применяется для образцовых термопар. Поверяемую термопару помещают в тигель с металлом высокой чистоты, установленной в печи, и регистрируют площадку на кривой изменения термо-ЭДС по мере повышения или понижения температуры металла. Данная площадка соответствует температуре плавления или кристаллизации металла, причем более предпочтительно вести градуировку по точке кристаллизации. В качестве реперных металлов используют золото, палладий, платину и др.

Методом сличения проводится градуировка образцовых термопар второго разряда и технических ТТ. Он заключается в непосредственном измерении термо- ЭДС градуируемой термопары при постоянной температуре свободных концов t 0 =0 0C и различных температурах t 2 рабочего спая, причем последняя определяется с помощью образцового термометра. Измерения термо- ЭДС производят с помощью переносного потенциометра с точностью измерения (отсчета) не хуже 0.1 мВ. Отсчет проводится после 10 минут выдержки при данной температуре.

Измерение термо-ЭДС компенсационным путем

Измерение термо-ЭДС термопары прямым путем, по силе тока в цепи постоянного сопротивления, с помощью милливольтметра, можно осуществить сравнительно просто. Однако этот метод обладает рядом недостатков, создающих дополнительные погрешности, что в большинстве случаев не позволяет получить высокой точности измерения.

В измерительной технике кроме прямых методов измерения известны компенсационные метода или методы противопоставления (сравнения) неизвестной величины величине известной. Компенсационные методы позволяют провести измерения более точно, хотя и не всегда так просто, как прямое измерение.

Основное преимущество компенсационного измерения термо-ЭДС, по сравнению с прямым, с помощью милливольтметра, состоит в том, что в момент измерения ток в цепи термопары равен 0. Это означает, что величина сопротивления внешней цепи не имеет значения: никакой подгонки сопротивления внешней цепи делать не надо и беспокоиться о влиянии температуры окружающей среды на внешнюю цепь нет необходимости.

Автоматические потенциометры

Автоматические потенциометры служат для компенсационных измерений термо-ЭДС без ручных манипуляций, свойственных неавтоматическим потенциометрам. У последних ручные манипуляции после стандартизации тока сводятся к следующей необходимости перемещать движок реохорда до тех пор, пока стрелка гальванометра не встанет на ноль. При этом перемещение движка производится во вполне определенном направлении.

Измерительная схема автоматического потенциометра в принципе не отличается от схемы не автоматического потенциометра.

Схема имеет три источника напряжения (батарея Б, нормальный элемент НЭ и термопару Т) и три цепи. Цепь батареи выполнена в виде моста: в диагональ BD включается питание, а в диагональ CA - цепь термопары. Цепь нормального элемента подключается к плечу CD компенсационной цепи. С помощью переключателя П в цепь термопары или в цепь нормального элемента включается электронный усилитель ЭУ (в том числе и вибрационный преобразователь). При включении цепи нормального элемента вводится шунтирующее сопротивление R1, параллельное электронному усилителю, так как в этом случае величина напряжения небаланса бывает много больше, чем при включении цепи термопары.

Электронные автоматические потенциометры называют иногда приборами с непрерывной балансировкой, так как измерение небаланса производится здесь с частотой переменного тока 50 Гц.

3. Электрические термометры сопротивления

В металлургической практике для измерения температур до 6500С применяются термометры сопротивления (ТС), принцип действия которых основан на использовании зависимости электрического сопротивления вещества от температуры. Зная данную зависимость, по изменению величины сопротивления термометра судят о температуре среды, в которую он погружен. Выходным параметром устройства является электрическая величина, которая может быть измерена с весьма высокой точностью (до 0.020С), передана на большие расстояния и непосредственно использована в системах автоматического контроля и регулирования.

В качестве материалов для изготовления чувствительных элементов ТС используются чистые металлы: платина, медь, никель, железо и полупроводники.

Вид функции R = f (t) зависит от природы материала и может быть записан как линейное уравнение R = R 0 (1 + at), где a – температурный коэффициент сопротивления, t – температура.

Сопротивление полупроводников с увеличением температуры резко уменьшается, т. е. они имеют отрицательный температурный коэффициент сопротивления практически на порядок больше, чем у металлов. Полупроводниковые термометры сопротивления (ТСПП) в основном применяются для измерения низких температур.

Достоинствами ТСПП являются небольшие габариты, малая инерционность, высокий коэффициент. Однако они имеют и существенные недостатки:

1) нелинейный характер зависимости сопротивления от температуры;

2) отсутствие воспроизводимости состава и градуировочной характеристики, что исключает взаимозаменяемость отдельных ТС данного типа. Это приводит к выпуску ТСПП с индивидуальной градуировкой.

Типы и конструкции ТС

Для решения различных задач ТС делятся на эталонные, образцовые и рабочие, которые в свою очередь подразделяются на лабораторные и технические.

Технические ТС в зависимости от назначения и конструкции делятся на: погружаемые, поверхностные и комнатные; защищенные и не защищенные от действия агрессивной среды; стационарные и переносные; термометры 1-го, 2- го и 3-го классов точности и т. д. Термометр состоит из чувствительного элемента, расположенного в защитном стальном чехле, на котором приварен штуцер. Провода, армированные фарфоровыми бусами, соединяют выводы чувствительного элемента с клеммной колодкой, находящейся в корпусе головки. Сверху головка закрыта крышкой, снизу имеется сальниковый ввод, через который осуществляется подвод монтажного кабеля. При измерении температуры сред с высоким давлением на чехол ТС устанавливается специальная защитная (монтажная) гильза.

Чувствительный элемент ТС выполнен из металлической тонкой проволоки с безиндукционной каркасной или бескаркасной намоткой. Значительно реже в металлургической практике встречаются полупроводниковые термометры сопротивления (ТСПП) для измерения температуры от -90 до +180 0С. Их применяют в термореле, низкотемпературных регуляторах, обеспечивающих высокоточную стабилизацию чувствительных элементов газоанализаторов, хроматографов, корпусов пирометров, электродов термоэлектрических установок для экспресс-анализа состава металла и т. п.

Что такое температура?

Что такое температура? (определение и пояснение если можно)

Sapienti sat

От лат. Temperatura - нормальное состояние
Температура - физическая величина, характеризующая среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия. В равновесном состоянии температура имеет одинаковое значение для всех макроскопических частей системы.
Для измерения температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры.

Булат 1

Температу́ра (от лат. temperatura - надлежащее смешение, нормальное состояние) - физическая величина, примерно характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия. (http://ru.wikipedia.org/wiki/Температура).
По сути, температура - мера кинетической энергии молекул.
Ek = 3/2 * k*T, где Ek - средняя кинетическая энергия молекул, k - постоянная Больцмана = 1,38 * 10^-23 Дж/К, T - температура (в градусах Кельвина) .
http://ru.wikipedia.org/wiki/Постоянная_Больцмана
В более общем термодинамическом определении: температура - величина, обратная изменению энтропии (степени беспорядка) системы при добавлении в систему единичного количества теплоты: 1/T = ΔS/ΔQ.

это скорость движения молекул и ещё с условием того, что оно может быть обнаружено в диапазоне инфро красного спектра излучения электромагнитной волны.
Поэтому температура на высоте 1000 км от Земли имеет тысчи градусов цельсия, но там это - не ощущается из-за разряжонности атмосферы.

Это энергия хаотического микроскопического движения, приходящаяся на одну степень свободы.
Суть в том, что хаотическое движение со временем распространяется на все "степени свободы", то есть, на все возможные способы движения. Например, если молекула может двигаться в трёх направлениях и вертеться в трёх направлениях, то со временем энергия равномерно распределится на все шесть движений.
Если молекула может ещё и колебаться как пружинка, то энергия проникнет и в это движение. Если молекула может излучать фотоны, то хаос проникнет и туда -- молекула станет хаотически испускать фотоны.
В конечном итоге, когда всё устаканивается, все возможные формы движения оказываются задействованы одинаково -- это называется "термодинамическое равновесие". Вот в этом состоянии, сколько энергии приходится на одну степень (а на каждую приходится одно и то же количество энергии) и называется "температурой". Только, чтобы перевести из джоулей в градусы, нужно ещё поделить на постоянную Больцмана.
Если два вещества, молекулы которых имеют разное количество степеней свободы, снабдить одинаковым количеством энергии, то то вещество, у которого степеней свободы больше, будет более холодным. Тепло перетекает от более горячего к более холодному, поэтому, там, где больше степеней свободы, туда направляется и энергия.

Анатолий хапилин

Это условная мера для определения степени возбуждения плазмы-акаши вокруг планеты, которая в свою очередь движет молекулы структур в месте ее возбуждения. Например, огонь, как элемент эфирной материи, более энергетичен, чем физические элементы, а следовательно, он возбуждает локально плазму, пронизывающую все и вся, а так же пространство в структуре, которая, к примеру, должна сгореть, и та начинает разрушать электронные связи структуры. Чем слабее последние, тем быстрее данная структура разрушится. И чем выше степень возбуждения плазмы при горении, например, газа, тем она энергетичнее. Подробнее - в источнике.

Евгений дюбайло

Температура - физическая величина, характеризующая среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.
проще говоря-температура-мера измерения энергии