Какие стали обладают высокой свариваемостью. Группы

При определении критериев свариваемости металлов и их сплавов ориентируются на следующие их свойства:

  • чувствительность металла к тепловому воздействию, которое создается при сварке;
  • склонность металла к росту зерна с сохранением пластических и прочностных свойств, структурным и фазовым изменениям в зоне термического воздействия;
  • химическая активность металла, влияющая на его окисляемость при термическом воздействии сварочного процесса;
  • сопротивляемость металла к образованию пор и трещин в холодном и горячем состоянии.

Большое влияние на качество сталей оказывает так называемая их раскисляемость, которая характеризуется содержанием марганца, кремния и некоторых других элементов и равномерностью их распределения. По этому параметру различают три вида стал ей: кипящая - «кп», полуспокойная - «пс» и спокойная - «сп».

Кипящая сталь отличается большой неравномерностью распределения вредных примесей (особенно серы и фосфора) по толщине проката и получается при неполном раскислении металла марганцем. Характерной особенностью этого вида сталей является склонность к старению и образование кристаллизационных трещин в шве и околошовной зоне, что приводит к переходу в хрупкое состояние при отрицательных температурах.

Спокойная сталь получается при равномерном распределении примесей, поэтому она менее склонна к старению и меньше реагирует на сварочный нагрев. Полуспокойная сталь занимает промежуточное значение между кипящей и спокойной.

Все эти свойства учитывают при выборе технологических приемов сварки, способов формирования сварочного шва, параметров теплового воздействия и т.д.
В качестве примера приведем свариваемость сталей, как наиболее распространенных конструктивных материалов.

Для сварных конструкций лучше всего использовать низкоуглеродистые и низколегированные стали, обладающие высокой степенью свариваемости. Наибольшее влияние на качество сварного соединения оказывает углерод. Увеличение содержания углерода и ряда других легирующих элементов снижает свариваемость сталей, ухудшая качество шва. Сварные соединения высокоуглеродистых и высоколегированных сталей отличаются повышенным содержанием трещин и выполняются по специальной технологии.

Классификация сталей по свариваемости

Группа по свариваемости

Марка стали

Углеродистая

Конструкционная легированная

1 .Хорошая Ст.1;Ст.2;Ст.З; Ст. 4;0, 8; сталь 10,15,20,25; 12кп, 15кп, 1бкп, 20кп 15Г,- 20Г; 15Х;1 5ХА; 20Х; 15ХМ; 14ХГС; 10ХСМД; 10ХГСМД,15ХСМД
2. удовлетворительная Ст5,- стальЗ0, 35 12ХМ2; 12ХНЗА;14Х2Ж; 10Г2МП; 20ХНЗА; 20ХН; 20ХГСА; 25ХГСА; З0Х, 30ХМ
3.Ограниченная Стб; сталь40, 45, 50 35Г; 40Г; 45Г; 40Г2,- 35Х,- 40Х; 45Х; 40ХН; 40; 40ХМФЙ," ЗОХГС; ЗОХГСА; зохгсм,- 35ХМ; 20Х2Н4А; 4ХС; 12Х2Н4МА
4 .Плохая сталь65, 70, 75, 80, 85, У7, У8, У9, У10, У11, У12 50Г; 50Г2; 50Х; 50ХН; 45ХНЗМФА; 6Хс; 7X3,- 9ХС; 8X3; 5ХНТ; 5ХНВ

Примечание: Стали, относящиеся к хорошим, имеют содержание углерода менее 0,25%. Они хорошо свариваются без образования закалочных структур и трещин в широком диапазоне режимов сварки.

Стали, относящиеся к удовлетворительным, имеют содержание углерода от 0,25 до 0,35%. Они мало склонны к образованию трещин и при правильно подобранных режимах сварки дают качественный шов. Для улучшения качества сварки часто применяют подогрев.

Ограниченно свариваемые стали имеют содержание углерода от 0,36 до 0,45% и склонны к образованию трещин. Сварка требует обязательного подогрева. Плохо свариваемые стали содержат углерод в количестве более 0,45%. При их сварке требуются специальные технологические процессы.

Легирование стали одним или несколькими легирующими элементами придает ей определенные физико-механические свойства. Как правило, повышение уровня легирования и прочности стали приводит к ухудшению ее свариваемости и первостепенная роль в этом принадлежит углероду.

Низколегированные стали хорошо свариваются всеми способами плавления. Получение же при сварке равнопрочного сварного соединения, особенно у термоупрочненных сталей, вызывает определенные трудности. В зонах, удаленных от высокотемпературной области, возникает холодная пластическая деформация. При наложении последующих швов эти зоны становятся участками деформационного старения. Это в конечном итоге приводит к снижению пластических и повышению прочностных свойств металла и соответственно к появлению холодных трещин. В среднелегированных сталях увеличивается склонность к закалке, в связи с чем такие стали имеют высокую чувствительность к термическому циклу сварки. Их околошовная зона оказывается резко закаленной, а следовательно, и непластичной при всех режимах сварки, обеспечивающих удовлетворительное формирование шва. Поэтому с целью снижения скорости охлаждения околошовной зоны при сварке этих сталей необходим предварительный подогрев свариваемого изделия.

При сварке высоколегированных хромистых 08X13, 08Х17Т и некоторых других сталей существуют отличительные особенности:

  • высокий порог хладноломкости стали, находящийся обычно в области положительных температур;
  • склонность к значительному охрупчиванию в околошовной зоне;
  • низкая пластичность и вязкость металла шва, выполненного сварочными материалами аналогичного со сталью химического состава;
  • невозможность устранить охрупчивание термообработкой.

Сварку таких сталей необходимо выполнять с минимальным тепловложением, так как с увеличением погонной энергии возрастает склонность зон сварного соединения к росту зерен, появлению микротрещин и падению пластичности. При этом снижается сопро-тивляемость сварного соединения локальным повреждениям и межкристаллической коррозии. В процессе сварки возникает опасность коробления и появляется повышенный уровень остаточных напряжений. После сварки в ряде случаев требуется термообработка.

Окисляемость металла под термическим действием сварочной дуги определяется его химической активностью. От этого напрямую зависит степень защиты сварочного шва, применяемого при сварке. Чем выше химическая активность металла, тем качественнее должна быть защита. Наибольшей химической активностью отличаются титан, ниобий, цирконий, вольфрам, молибден, тантал и некоторые другие. Поэтому при сварке этих металлов недостаточно применение флюсов и защитных покрытий, так как в защите нуждаются не только сварочный шов, но и прилегающая к нему область. Самой эффективной защитой в данном случае служит сварка в вакууме или в среде инертного газа высокой чистоты.

Сварка остальных цветных металлов (меди, алюминия, магния, никеля и их сплавов) тоже требует высокой защиты, которую обеспечивают инертные газы, флюсы и специальные электродные покрытия. Для сварки сталей и сплавов на основе железа в качестве защитных средств используют флюсы и электродные покрытия.

Стали являются самыми широко применяемыми конструкционными материалами. При строительстве мостов, зданий и многих других строительных конструкций сталь необходимо сваривать. Конструкционная прочность стальной конструкции зависит не только от прочности стали, но также и от прочности сварных швов. Вот почему свариваемость стали всегда является очень важным вопросом.

Влияние содержания углерода на свариваемость стали

Многие низкоуглеродистые стали легко свариваются. Сварка среднеуглеродистых и высокоуглеродистых сталей представляет собой более трудную задачу, так при сварке зоне термического влияния сварки может образовываться мартенсит, что приведет к значительному снижению вязкости сварного шва.

Для повышения свариваемости сталей предпринимают различные меры, такие как подогрев материала или минимизация поглощения сталью водорода. Поглощение сталью водорода делает сталь более хрупкой.

Свариваемость низкоуглеродистых сталей

В низкоуглеродистых сталях прочность сварных участков является более высокой, чем у основного металла. Это связано с тем, что при охлаждении зоны термического влияния сварки в ней образуется мелкодисперсная перлитная структура. Кроме того, остаточный аустенит вдоль границ перлитных зерен сдерживает кристаллизацию и поэтому способствует сохранению мелкого зерна, что также дает вклад в повышение прочности сварного участка.

Превращения стали в зоне сварного шва

В ходе сварки сталь вблизи сварного шва разогревается выше критической температуры А 1 и образуется аустенит (рисунок а). При охлаждении аустенит в этой нагретой зоне превращается в новую структуру, тип которой зависит от скорости охлаждения и диаграммы термокинетического превращения стали.

Обыкновенная низкоуглеродистая сталь имеет настолько низкую закаливаемость, что при обычных скоростях охлаждения на воздухе мартенсит почти никогда не образуется (рисунок б).

Легированную же сталь перед сваркой специально подогревают, чтобы снизить скорость охлаждения сварного шва или подвергают сварное соединение дополнительной термической обработке для отпуска образовавшегося мартенсита (рисунок в).

Рисунок – Превращения стали в зоне термического влияния сварки:
а) структура стали при максимальной температуре нагрева в зоне сварки;
б) структура стали с низкой закаливаемостью в зоне сварки после охлаждения;
в) структура стали с высокой закаливаемостью в зоне сварки после охлаждения.

Свариваемость закаленной стали

Свариваемость стали , которая перед сваркой подвергалась закалке и отпуску, имеет два рода проблем. Во-первых, участок зоны термического влияния сварного шва, который нагревается выше температуры А 1 , может при охлаждении образовывать мартенсит. Во-вторых, участок зоны термического влияния сварного шва, который нагрелся ниже температуры А 1 , может подвергнуться чрезмерному отпуску. По-хорошему, сталь в закаленном и отпущенном состоянии сваривать нельзя.

Свариваемость – это реакция свариваемых металлов и сплавов на процесс сварки. Она определяет технологическую сторону процесса и эксплуатационную пригодность изделия.

Расплавление и кристаллизация металла в условиях сварки представляют собой сложный металлургический процесс, протекающий при неравномерном нагреве, перегреве и охлаждении металла в местах соединения заготовок. Процесс сопровождается структурными превращениями и перекристаллизацией металла. Это во многом определяет качество и надежность сварного соединения, т.е. совокупность приобретаемых свойств шва, которые обусловливают пригодность соединений и возможность использования сварной конструкции в технике.

На свариваемость стали большое влияние оказывает ее химический состав .

Углерод – это важный элемент химического состава стали, определяющий ее свариваемость, прочность, вязкость, закаливаемость. Хорошо свариваются стали, содержащие не более 0,25% углерода. При более высоком его содержании, свариваемость стали, резко ухудшается, так как в нагретой околошовной зоне - термического влияния, образуются структуры закалки, приводящие к возникновению горячих и холодных трещин.

Сера – вредная примесь, образующая легкоплавкие соединения с железом, которые располагаются по границам зерен, ослабляя связь между ними с возникновением трещин в горячем состоянии. Это явление вызывается красноломкостью металла. Поэтому во избежание трещин в сварном шве содержание серы в свариваемых сталях должно быть менее 0,045%.

Фосфор – тоже вредная примесь. В сталях он вызывает появление хрупких структур, особенно при отрицательных температурах. Этот процесс называется хладноломкостью . Содержание фосфора в свариваемых сталях и сварных швах должно быть менее 0, 04%.

Марганец – это элемент химического состава стали, несколько повышающий прочность и упругость стали. При его содержании в сталях в пределах 0,3…0,8% процесс сварки не затрудняется. При содержании же марганца более 1,8% возникает опасность появления хрупкости и трещин, в связи с закаливаемостью такой стали.

Кремний несколько повышает прочность, упругость и твердость стали. При его содержании до 0,2…0,3%, свариваемость не ухудшается. При содержании более 0,8% условия сварки ухудшаются из-за высокой жидкотекучести стали и образования тугоплавких окислов кремния.

Хром повышает прочность, упругость и твердость стали, но при сварке образует карбиды хрома, ухудшающие коррозионную стойкость шва и прилегающую к нему околошовную зону. Он резко повышает твердость металла в этой зоне термического влияния и увеличивает вероятность возникновения трещин, способствует образованию тугоплавких окислов, затрудняющих процесс сварки. В подлежащих сварке безникелевых сталях содержание хрома не должно превышать 0,3%.

Молибден способствует измельчению кристаллов (зерен стали), повышает прочность стали. Особенно это важно при ударных нагрузках и высоких температурах, но молибден вызывает появление трещин в наплавленном металле и в зоне термического влияния. В процессе сварки молибден активно окисляется и выгорает. В ответственных сварных конструкциях содержание молибдена не должно превышать 1%.

Ванадий способствует закаливаемости стали, чем, затрудняет сварку; он активно окисляется и выгорает. В ответственных сварных конструкциях содержание ванадия не должно превышать 1%.

Вольфрам увеличивает твердость стали и ее износостойкость при высоких температурах (красностойкость), но затрудняет процесс сварки ввиду сильного окисления. В состав стали, подлежащей сварке, вольфрам не вводится.

Кислород активно окисляет расплавленное железо, образуя хрупкие структуры, он окисляет и легирующие элементы. Расплавленный металл сварного шва необходимо защищать от взаимодействия с кислородом воздуха. Это является одной из функций электродного покрытия, которое при сгорании выделяет защитный (углекислый) газ. Для защиты от окисления сварку ответственных конструкций из нержавеющих сталей и цветных металлов осуществляют в таких защитных газах, как аргон, гелий.

Водород. При сварке атомы водорода легко растворяются в расплавленном металле, а при затвердевании металла вновь соединяются в молекулы, которые собираются в разных местах шва, образуя газовые пузырьки. Водород вызывает в металле шва пористость и мелкие трещины, он повышает хрупкость стали, снижая ее прочность и вязкость. Водород, как и кислород, который может соединиться с расплавленным металлом шва, находится в окружающем воздухе, влаге, оставшейся в непросушенном электродном покрытии, во флюсах и на поверхности свариваемого металла в виде воды, снега, инея. Водород также содержится и в ржавчине, которая может быть на сварочной проволоке или кромках заготовок. Защита расплавленного металла шва от водорода осуществляется одновременно с защитой от кислорода.

Наименее насыщается металл водородом при сварке постоянным током обратной полярности, большее насыщение – при сварке переменным током.

Никель, содержащийся в легированных сталях, значительно улучшает их свариваемость: он измельчает зерно, придает шву пластичность и прочность. При сварке никелесодержащих сталей требуется надежная защита их от воздействия кислорода воздуха. Никель дорог. Применение никелевых сталей должно быть технико-экономически обосновано.

Титан, содержащийся в легированных сталях, измельчает зерно, повышает пластичность шва и качество соединения. Нержавеющие стали для ответственных сварных конструкций должны содержать в своем составе помимо никеля, еще 4 -5% титана.

На свариваемость стали также, влияют режимы и способы сварки.

Чтобы правильно выбрать способ и режимы сварки, исключающие возникновение дефектов, необходимо знать технологическую свариваемость металла. Это его реакция на тепловые воздействия в околошовной зоне без расплавления, а также металлургические процессы плавления и последующей кристаллизации металла. По известному химическому составу стали можно прогнозировать, какова ее технологическая свариваемость. Но точность таких прогнозов не всегда надежна и, полагаться на них, можно при сварке небольшого количества малоответственных изделий. В случае изготовления значительного числа ответственных сварных конструкций, необходимо экспериментально определять технологическую свариваемость той партии металла, из которой будут изготовлены изделия. Способы определения технологической свариваемости можно разделить на две группы .

Первая – когда прямым способом устанавливают свариваемость путем сварки одного или нескольких образцов изделия. При этом узнают о склонности металла к закалке или отсутствии таковой, о прочности и пластичности металла, об изменении микроструктуры. Полученные результаты отличаются высокой достоверностью;

Вторая – группа способов определения свариваемости проще и основана на имитации сварочных процессов. При этом косвенным способом, например, термообработкой при температурах, близких к сварочному процессу, определяют изменения в металле. Полнота и достоверность такой информации значительно ниже.

По свариваемости стали подразделяются на четыре группы, характеризующиеся способностью металлов образовывать при сварке соединения с заданными свойствами – прочные, герметичные, без хрупкости.

Первая группа – хорошо свариваемые стали, образующие сварные соединения высокого качества без применения особых приемов и подогрева до и после сварки. Это - низкоуглеродистые, низко- и среднелегированные стали. Например, от БСт1 до БСт4; от ВСт1 до ВСт4; от стали 08 до стали 25; стали 15Х; 20ХГА, 12ХН4А; 10ХСНД; 20Х23Н18Т; 12Х18Н9Т и другие требуемого химического состава.

Вторая группа – стали удовлетворительно свариваемые, которые для получения сварных соединений высокого качества требуют строгого соблюдения режимов сварки, применения специального присадочного материала, особо тщательной очистки свариваемых кромок, а в некоторых случаях – предварительного и сопутствующего подогрева до 150 0 С, последующий отжиг. Например, это стали БСт5сп; БСт5Гсп; сталь 30; сталь 35; сталь 20ХНЗА; сталь 12ХА и др.

Третья группа – стали с ограниченной свариваемостью в обычных условиях и склонные к образованию трещин. Содержат углерод от 0,35% до 0,5%, это могут быть и высоколегированные стали. Во избежание образования трещин их перед сваркой подвергают подогреву до 200…400 0 С с последующим отжигом. Например, БСт5пс; стали 40, 45, 50, 35ХН.

Четвертая группа – стали плохо свариваемые, практически не подлежащие сварке ввиду большого содержания углерода и легирующих элементов, приводящих к образованию трещин. Например, это стали 60Г, 70Г, 50ХН, 80С, У7, У10, У13, 9ХС, ХВГ, 3Х2ВФ. Качество сварных соединений таких сталей низкое, несмотря на предварительную сопутствующую и последующую термообработку.

К неудовлетворительно свариваемым сталям относятся и холодноупрочненные стали; арматура, упрочненная вытяжкой, сварка которой приводит к разупрочнению и повышению хрупкости.

Необходимо отметить, что свариваемость арматурной стали отличается от показателей свариваемости листа, фасонного проката для металлоконструкций. Например, арматурные стержни из Ст5 свариваются лучше, чем листовая сталь той же марки.

Сварка сталей на морозе не допускается.

Классификация сталей. Принципы классификации .

    По назначению: конструкционные, пружинные, инструментальные, котельные, судовые и тд.

    по свойствам: кислотостойкие, жаростойкие, теплоустойчивые, быстрорежущие и тд,

биметаллические материалы и методы их получения

    по химическому составу: по содержанию углерода (до 0,25; 0,25…0,45; свыше0,45…или свыше 0,5%С.; по раскисленности(к, пс, с, Табл.1); по методам контроля(только х/с; х/с и свойства; обьем контроля свойств); по содержанию легирующих элементов(н/л Σ≤5% и ≤2% каждого; с/л 5…10% и в/л > 10%);сплавы

    по способу выплавки: электро-(дуговые, плазменные, шлаковые), в индукционных печах (втч, вакуумные), конверторные, бессемеровские, мартеновские

    по способу переработки: холодно- или горячекатаные, литые, кованные

    по свариваемости

Химический состав стали ГОСТ 380 по плавочному анализу ковшовой пробы должен соответствовать нормам, приведенным в таблице 1.

Таблица 1

Марка стали

Массовая доля элементов, %

углерода

марганца

Не более 0,23

Не более 0,05

Не более 0,05

Не более 0,05

Не более 0,15

Не более 0,05

Не более 0,15

Не более 0,15

Кое что о металлах.

Маркировка сталей:

Например: Ст 3псВ3, Сталь 20,

Сталь 15 Х1М1ФА

Алюминий

Марганец

Вольфрам

Молибден

*– только в высоколегированных сталях, не в конце.

Основной легирующий элемент – углерод

Бронзы например Бр.АЖМц10-3-1,5(алюминий,железо,марганец); Бр.КМц3-1; МНЖКТ5-1-0,2-0,2(медь, никель,железо,кремний,титан)

Понятие свариваемости.

Под физической свариваемостью понимают совокупность таких свойств металлов и сплавов, как способность их к взаимной растворимости и диффузии в твердом и жидком состояниях, совместной кристаллизации расплавленных основного и присадочного металлов.

Технологическая свариваемость является комплексной характеристикой металла, отражающей его реакцию на процесс сварки и определяющей его относительную техническую пригодность для выполнения заданных сварных соединений, удовлетворяющих условиям последующей их эксплуатации. Чем больше количество применимых к данному металлу способов сварки и шире для каждого способа сварки пределы оптимальных режимов, обеспечивающих возможность получения сварных соединений требуемого качества, тем лучше его технологическая свариваемость. Определение понятия свариваемости приведено в ГОСТ 29273-92.

«Металлический материал считается поддающимся сварке до установленной степени при данных процессах и для данной цели, когда сваркой достигается металлическая целостность при соответствующем технологическом процессе, чтобы свариваемые детали отвечали техническим требованиям, как в отношении их собственных качеств, так и в отношении их влияния на конструкцию, которую они образуют.»

Качественные оценки свариваемости сталей получили широкое распространение в производственной практике как оценки степени свариваемости:

I – хорошая свариваемость – когда в заданных (достаточно широких) технологических (режимы) и конструктивных (способ) условиях удовлетворяются требуемые эксплуатационные свойства сварных соединений;

II – удовлетворительная свариваемость – когда она обеспечивается выбором рационального режима сварки и его соблюдением в процессе изготовления изделия;

III – ограниченная свариваемость – когда необходимо применять специальные технологические мероприятия или изменять способ сварки;

IV – плохая свариваемость – когда даже при всех принятых специальных технологических мероприятиях не достигаются требуемые эксплуатационные свойства сварных соединений.

При оценке свариваемости главным образом при помощи проб определяют три характеристики: – стойкость против кристаллизационных трещин; – отсутствие трещин в околошовной зоне; – отсутствие перехода металла ЗТВ в хрупкое состояние. Для выс. лег. сталей еще и потеря коррозионной стойкости.

Таким образом при оценке свариваемости должны учитываться во взаимосвязи: – свойства материалов; – тип, габариты и назначение конструкции; – технология сварки.

Испытания на свариваемость.

    Методы испытания стойкости к горячим трещинам (образцы переменной жесткости)

    Методы испытания стойкости шва и околошовной зоны к появлению холодных трещин (образцы повышенной жесткости).

    Методы испытания всех зон на переход в хрупкое состояние (мех. испытания, структурный анализ).

    Испытания на стойкость к потере технологических свойств (коррозионных, механических, износостойкости и др).

Факторы влияющие на переход металла в хрупкое состояние:

Внутренние:

– соединения фосфора

– укрупнения зерна

– нитриды (азот)

– гидриды и флокины (водород)

– выпадение охрупчивающих фаз (интерметаллиды)

– концентраторы напряжений

– динамическое нагружение

– низкие температуры.

Основные свойства материалов (металлов) влияющие на их свариваемость.

Физические:

    Одно, двух или многофазная структура (например Tiα или α + β, сталь А или А + Ф)

    Наличие фазовых переходов в твердом состоянии (полиморфизм)

    Температуры фазовых переходов (в т ч – плавления)

    Температуры плавления возможных (наиболее частых) химических соединений металла

    Растворимость газов в твердой и жидкой фазах

    Коэффициент линейного расширения (18-8)

    Пластичность в различных диапазонах температур

    Вязкость жидкого металла и ее зависимость от температуры (чугун, титан)

    Теплопроводность

    Плотность

    Способность поглощать или отражать фотоны (при лазерной сварке)

    Магнитные свойства.(например, в сталях при ЭЛС или магнитное дутье при РДС, пермаллой)

Химические:

    Химическая активность при различных температурах

    Экзо или эндо- термические реакции

    Влияние пассивационных пленок

    Склонность к образованию карбидов, боридов и др.

    Токсичность (цинк, свинец, бериллий)

Технологические:

    Склонность к образованию горячих трещин

    Вероятность образования хрупких структур (в т ч закаливаемость)

    Склонность к росту зерна

    Состояние поставки (история): литье, нагортовка, термообработка, горячая ковка и т. д.

    Загрязненность примесями

    Дефектность (поры, расслоения, включения) α

    Состояние поверхности

    Толщина и геометрические формы

    Соответствие чертежу

(Все эти факторы применительно к каждому материалу инженер сварщик должен знать и учитывать)

Основные факторы определяющие свариваемость конструкционных материалов.

Свариваемость сталей : определяется содержанием углерода, других легирующих и толщиной.

Низкоуглеродистые стали (Рис.14) с содержанием углерода С0,20 % свариваются без ограничений, С = 0,21…0,25% иS100 мм – требуется подогрев 100…150 о С.

Почему нужен подогрев? Для уменьшения напряжений нужно уменьшать погонную энергию, но при этом растет скорость охлаждения и вероятность появления трещин.

Низколегированные конструкционные стали: 15ГС, 16ГН, 09Г2С и др. приS30 мм свариваются также, как и низкоуглеродистые. ПриS> 30 мм подогрев 100…150 о С.

Низколегированные теплоустойчивые стали (хромо-молибденовые) см таблицу (Рис.14), требуют предварительного подогрева и последующей термической обработки.

Среднелегированные стали повышенной прочности варятся только с подогревом и последующей термической обработкой. Для оценки температуры предварительного подогрева используются эмпирические уравнения влияния легирующих элементов на склонность к хрупкому разрушению. У разных авторов могут различаться набор элементов и коэффициенты при них, но принцип построения сохраняется. В частности по Д. Сефериану с учетом толщины стали:

Т предв. подогр.= 350 ,

С э = С% + 1/9(Mn% + Cr%) + 1/18Ni% + 1/13Mo%.

S– толщина стенки, мм

В случае невозможности подогрева и ТО всей конструкции применяют предварительную наплавку на свариваемые кромки с использованием сварочных материалов не склонных к образованию трещин.

Высоколегированные стали в зависимости от класса могут по-разному воспринимать цикл сварки.

Большое количество легирующих элементов может приводить к химической и, как следствие, структурной неоднородности.

Стали мартенситного и мартенсито-ферритного классов склонны к закалке и требуют подогрева.

Стали легированные азотом могут образовывать хрупкие трещины в ЗТВ.

Стали аустенитного класса склонны к горячим трещинам. Избежать их можно, добавив в металл шва 5…10% ферритной фазы. Рассчитать требуемый хим состав металла шва позволяет диаграмма Шефлера (Рис. 15).

Важным для высоколегированных сталей является не допустить в процессе сварки потери эксплуатационных свойств (прочности, жаростойкости, коррозионной стойкости и тд).

Особенностями высоколегированных хромо-никелевых сталей являются:

– низкая теплопроводность

– большой коэффициент линейного расширения (≈в 1,5 раза больше, чем углеродистых сталей)

– большая вязкость жидкого металла.

Разнородные стали

Свариваемость соединений из сталей относящихся к разным структурным классам связана, в основном, с тремя факторами:

– Существенное различие коэффициентов линейного расширения

– Образование хрупких структур в шве в процессе перемешивания

– Развитие структурной неоднородности (как правило, в зоне сплавления) в следствие, в том числе, диффузии углерода в строну металла с большей предельной растворимостью.

(Процесс диффузии углерода в сталях (при сварке, термообработке и эксплуатации) начинается с 350 о С и наиболее интенсивно идет в интервале 550…800 о С.)

– Возникшие напряжения в сварных соединениях разнородных сталей нельзя снять (или уменьшить) термообработкой.

Алюминий и его сплавы .

Сварка чистого Alпроизводится редко в основном в электротехнической промышленности где используется холодная сварка давлением.

Alсплавы делятся на две большие группы: термоупрочняемые и деформируемые т.е. упрочняемые наклепом (нагортовкой, деформацией). Общие для всех сплавов проблемы свариваемости следующие:

    На поверхности металла всегда имеется плотная тугоплавкая пленка Al 2 О 3 , с температурой плавления 2050 о С, при Т пл Al= 660 о С. Пленка препятствует растеканию и смачиванию жидкого металла и образует острые чешуйчатые оксидные включения.

    Высокая жидкотекучесть и резкое падение прочности твердого металла при высоких температурах (вблизи Т пл) приводит к возможности проливания сварочной ванны.

    Большая теплопроводность требует применения источников большой мощности или высокой концентрации мощности.

    Большая величина коэф. линейного расширения и низкий модуль упругости определяют высокую опасность деформирования конструкции.

    Высокая растворимость газов (в первую очередь водорода) в жидком металле и очень низкая в твердом металле приводит к выделению 90…95% газа в момент кристаллизации, что приводит к интенсивной пористости.

    Грубая столбчатая кристаллическая структура шва способствует развитию структурной неоднородности и наряду с П2 появлению горячих трещин особенно у сплавов типа АМг и АМц. (Al-Mg; Al-Mn)

    При сварке деформируемух сплавов происходит существенная потеря прочности в зоне рекристаллизации (АМг и АМц).

    Термо упрочняемые сплавы системы Al-Zn-MgилиAl-Cu-Mg(дюрали), или сплавы с большим содержаниеSi≥5% (силумины) склонны к охрупчиванию и появлению холодных трещин через некоторое время после сварки.

Технологические приемы применяемые при сварке: качественная очистка места сварки (травление, механическая очистка); подформовка стыка; переменный ток или обратная полярность; правильный выбор присадочного материала.

Титан и его сплавы .

Химически активный конструкционный материал – горит в чистом азоте.

Т пл 1665С. При нормальной температуре закрыт плотной оксидной и нитридной пленкой. Способен растворять водород в больших количествах. Максимальная растворимость водорода при Т1200С. В этой точке ЗТВ наиболее вероятно охрупчивание. Газы образуют с металлом химические соединения (TiO 2 ,TiN,Ti 3 N,TiH 2), которые при повышении температуры растворяются в металле, приводя к снижению пластичности. Содержание газов в металле должно быть ограничено: кислорода до 0,15%, азота до 0,05%, водорода до 0,01%.

Титан имеет полиморфное превращение ↔при температуре 882С, поэтому в процессе остывания первичная кристаллическая структура измельчается, что способствует хорошей свариваемости однофазных– сплавов. Двух фазные+сплавы обладают повышенной прочностью и твердостью, но при сварке склонны к образованию хрупких структур и трещин.

Физические особенности:

Коэффициент теплового расширения в 1,5 раза меньше, чем у углеродистых и в 3 раза меньше, чем у высоко легированных аустенитных сталей. Теплопроводность низкая примерно в 2,5 раза ниже, чем у стали, но в интервале температур 1500 ↔Т пл увеличивается почти в 5 раз. Вязкость жидкого металла при средней температуре сварочной ванны в 5 раз больше чем при Т пл, что приводит к образованию газовых полостей и подрезов при автоматической сварке.

Т.о, физико-технологические свойства для большинства титановых сплавов положительные, при условии хорошей защиты.

Медь и ее сплавы .

Характерной проблемой при сварке меди является ее высокая теплопроводность (в 9 раз больше, чем у стали, и в 14 раз больше, чем у нержавеющей стали) и низкая температура плавления 1083С, поэтому сварка меди идет, как правило, с малой скоростью при большом тепловложении и вся конструкция прогрета.

Медь весьма пассивна. Очень мала растворимость водорода, азот по отношению к меди вообще является инертным газом. Окислы имеют Т пл выше чем Т пл (Cu) и всплывают на поверхность сварочной ванны. (CuO– 1336,Cu 2 O– 1235С), при повышенном содержании кислорода образуется эвтектикаCu-Cu 2 Oс температурой плавления 1064С, снижающая пластичность металла.

Латунь (Cu+Zn),Zn– 10…40%. Цинк легко окисляется. Окись цинка – летучее ядовитое соединение. В результате испаренияZn(Т кипения 907С) образуется пористость.

Сплавы меди с другими металлами (кроме Zn) называются бронзами. В качестве конструкционных применяются:

– оловянистые

– алюминиевые

– хромистые

– бериллиевые и др.

Каждая имеет свои проблемы: – оловянистые хорошо сваривается, но склонны к пористости из-за кипения олова; – при сварке алюминиевых бронз (1,5…8%Al), с поверхности приходится удалять окисную пленку, как при сваркеAl; – хромистые бронзы (БрХ1, БрХ07) почти чистая медь; – бериллий еще более ядовит, чем цинк, поэтому бериллиевую бронзу как правило не сваривают.

Цирконий.

По свариваемости и физико-химическим свойствам очень близок с титаном, но еще более активен по отношению к газам. Сварку выполняют преимущественно в камерах с Ar. Для сварных конструкций обычно используют не чистыйZr, а его сплавы с небольшим количеством ванадия или ниобия для повышения пластичности.

Магний.

Сварочные проблемы такие же как и у Al, однако окисная пленкаMgOеще более тугоплавкая (2500 о С), но более рыхлая и не так плотно держится на поверхности. Кроме того,Mgспособен воспламеняться на воздухе. Для конструкций применяются сплавы сAl(МА-1, МА-3).

Тугоплавкие металлы .

Вольфрам, молибден, тантал, ниобий.

Являются весьма активными при высоких температурах и образуют, как правило, хрупкие сварные соединения, особенно MoиW. Сварку тугоплавких металлов ведут обычно в вакууме электронным лучом.

Бериллий.

Активный и ядовитый металл, при этом очень легок и прочен. Сваривают только диффузионной сваркой в вакууме.

Полиэтилен и другие пластмассы

Не электропроводный и плохо теплопроводный материал, что приводит к неравномерному нагреву по толщине стенки (трубы). Применяют нагрев с помощью ТЭНов (радиационный), ВЧ индукторов, потоков горячего воздуха с последующим сдавливанием или вдавливанием присадки.

Свариваемость - способность металла к образованию качественных сварных соединений, удовлетворяющих эксплуатационные требования к ним.

Возможности и условия образования качественного сварного соединения определяются многими факторами, важнейшими из которых являются:

  • характеристики и свойства свариваемых металлов;
  • выбор электродного и присадочного металла;
  • режимы сваривания;
  • температура нагревания и т. д.

На свариваемость существенно влияет химический состав стали, в частности, содержание углерода и легирующих элементов. Воздействие отдельных элементов проявляется по-разному – особенно в соединении с углеродом.

Среди главных характеристик свариваемости сталей стоит выделить склонность к образованию трещин и механические свойства сварного соединения. Их можно определить путем сваривания контрольных образцов.

Формула определения свариваемости стали

Если известен химический состав стали, можно определить ее свариваемость по эквивалентному содержанию углерода. Для этого используют формулу:

С экв. = С + Mn/20 + Ni/15 + (Cr + Mo + V)/10.

Цифры в этой формуле – это постоянные величины, а символы каждого из химических элементов обозначают максимальное включение его в сталь определенной марки, выражаемое в процентах.

Эквивалентное содержание углерода, полученное по этой формуле, является указанием на свариваемость сталей, которые можно условно разделить на четыре группы:

  • хорошо свариваемые (Сэкв не превышает 0,25%);
  • удовлетворительно свариваемые (Сэкв = 0,25% — 0,35%);
  • ограниченно свариваемые (Сэкв = 0,35 – 0,45%);
  • плохо свариваемые (Сэкв превышает 0,45%).

О хорошей свариваемости низкоуглеродистых сталей можно судить по прочному сварному соединению с основным металлом без трещин и снижения пластичности в околошовной зоне.

Свариваемость легированных сталей оценивается по возможности получения соединений, устойчивых к образованию трещин и закаленных структур, а также по снижению прочности, коррозии и так далее.

Однородные металлы свариваются гораздо легче, чем разнородные. Металл шва и металл зоны термического воздействия являются неоднородными. Признак неудовлетворительной свариваемости – склонность к образованию трещин, категорически недопустимых в сварных соединениях.

Характеристикой свариваемости термически упроченных сталей является склонность к снижению прочности в зоне термического воздействия при температуре 400-720º C, в зависимости от температуры отпуска стали при ее изготовлении на заводе. Таким образом, изготовление прочной сварной конструкции возможно только при условии детального изучения и учета свариваемости стали.

Влияние основных элементов на свариваемость сталей

Углерод , если его в стали менее 0,25%, свариваемость не ухудшает, а при большем его содержании свариваемость ухудшается, поскольку в зоне термического воздействия образуются закаленные структуры, что имеет следствием образование трещин. Если повышенное содержание углерода отмечается в присадочном материале, это приводит к пористости шва.

Марганец при его содержании не более 0,8% свариваемость не ухудшает, но при превышении этого показателя велики риски появления трещин из-за того, что этот элемент способствует закаленности стали.

Кремний в пределах 0,02–0,35% никак не воздействует на качество сваривания, а при содержании от 0,8 до 1,5% существенно затрудняет сварку по причине повышенной жидкотекучести и образования тугоплавких оксидов кремния.

Ванадий способствует закаленности стали, что усложняет процесс сварки. При сваривании ванадий, активно окисляясь, выгорает.

Вольфрам повышает прочность стали и усложняет сварку по причине сильного окисления.

Никель повышает пластичность и мощность, при этом не ухудшая свариваемость стали.

Молибден при сварке активно окисляется и выгорает, способствуя образованию трещин.

Хром , образующий тугоплавкие карбиды, значительно затрудняет сварку.

Ниобий и титан в процессе сварки соединяются с углеродом и препятствуют образованию карбида хрома, способствуя улучшению свариваемости.

Медь улучшает свариваемость, повышая прочность и пластичность стали, делая ее более устойчивой к коррозии.

Кислород работает на снижение пластичности и прочности стали, ухудшая ее свариваемость.

Азот обладает способностью создавать нитриды, то есть химические соединения с железом, которые повышают твердость и прочность, существенно снижая показатели пластичности стали.

Водород негативно сказывается на свариваемости, поскольку он накапливается в шве, вызывая образование пор и мелких трещин.

Фосфор – вредная добавка, повышающая твердость стали и делающая ее более хрупкой, что приводит к образованию холодных трещин.

Сера крайне нежелательна, поскольку она способствует быстрому образованию горячих трещин. При превышении содержания серы свариваемость резко ухудшается.