Все, что нужно знать о мембранных фильтрах для очистки воды. Как работает мембранный фильтр для воды? Для чего нужен мембранный фильтр

Очистка воды от вредных примесей актуальна не только при ее использовании в качестве питьевой, но и для технических нужд, где высокая минерализация приводит к появлению накипи, засорам в сантехническом оборудовании и арматуре, некорректной работе бытовой электротехники. Один из эффективных способов борьбы с вредными компонентами — мембранный фильтр для очистки воды, широко применяемый в промышленном производстве и бытовом хозяйстве.

На рынке представлен ряд мембранных устройств для водоочистки от разных производителей, при их выборе следует учитывать характер загрязнений, целевое назначение очищенной воды и объемы ее потребления. При самостоятельном монтаже систем с использованием мембранных фильтров важную роль играет степень загрязнений — при их большой интенсивности требуется использование фильтрующих устройств предварительной очистки и умягчения. Чтобы правильно собрать систему очистки воды с использованием любого типа фильтров, необходимо провести лабораторный анализ ее химического состава, данное условие является обязательным при водозаборе из скважин и колодцев частных домов, загородных дач.

Мембранный фильтр для воды относят к устройствам глубокой очистки, благодаря малым порам фильтрационного материала он способен отсеивать загрязнения диаметром от 0,0001 мкм. Чтобы понять, что представляет собой такой фильтр, рассмотрим поэтапную технологию его производства:

  • Нарезают полипропиленовую сетку на прямоугольники необходимой длины и ширины, она служит прокладкой между слоями фильтрующего материала.
  • Отрезают куски полиэстера равного с сеткой размера, в нем имеются мельчайшие каналы, через которые проходит вода и задерживаются вредные примеси, материал является фильтрующим элементом мембраны.
  • Полиэстер укладывают в стопки по 15 листов и скрепляют между собой высокочастотными акустическими волнами по технологии ультразвуковой сварки, получая один из сборочных элементов устройства — фильтратор.
  • Разматывают рулон из специальной фильтровальной бумаги и пропускают ее через смесь жидкого пластика с растворителем, которым покрывает одну из сторон, после застывания пластика и испарения растворителя на бумажной ленте формируется уникальная мелкоячеистая структура мембраны.
  • Мембрану раскладывают на столе, накрывают ее сверху сеткой размером в 2 раза меньше, и заворачивают вторую часть ленты наверх — получают своеобразный конверт из двух фильтрующих поверхностей, между которыми расположена изолирующая сетка.

  • На края пластиковой трубки с круглыми отверстиями по всей длине наносят клей и прикладывают к нему стопку из ряда полиэстерных фильтраторов, закрепляя на трубе скотчем.
  • Укладывают на первый лист полиэстера мембранный конверт с сеткой посередине и приклеивают его по краям, сверху накладывают следующий лист фильтратора, мембрану и снова проклеивают.
  • Операцию повторяют несколько раз (число фильтрующих мембранных слоев зависит от качества фильтра), получая в итоге своеобразный мембранный сэндвич. В недорогих бытовых устройствах количество наматываемых на дренажную трубку рукавов не превышает одного — двух, в высокотехнологичных промышленных установках, где требуется высокое качество очистки, число фильтрующих слоев достигает 15.
  • Начинают вращать трубку, наматывая на нее все собранные в единое целое элементы фильтра, сверху сжимают и закрепляют фильтрующие слои скотчем.
  • По краям устанавливают торцевые пластиковые наконечники и фиксируют их на клей.
  • Наматывают на цилиндрическую поверхность фильтра стекловолоконную проклеенную нить с необходимым натяжением, излишки клея убирают. После высыхания клеевого состава на поверхности фильтра образуется прочная стекловолоконная оболочка.

Бытовые фильтраторы в процессе производства собирают из четырех листов в следующей последовательности: мембрана, поддерживающий полиэстерный фильтратор, полиэтиленовая подложка, сетка. Листы складывают вместе в один рукав и наматывают на дренажную трубу, в фильтре их может быть несколько, уложенных вплотную друг другу и скрученных в спираль.

По рассмотренной выше технологии изготавливают наиболее популярные рулонные мембраны, также на рынке встречаются мембранные умягчители в виде дисков или изготовленные из других материалов (керамика).


Принцип работы

Рулонные фильтры для воды мембранного типа чаще других используют в системах бытовой водоочистки, их принцип работы основан на пропускании жидкости через специальную мелкоячеистую мембрану на пропитанной бумажной основе и отвода загрязнений с частичным улавливанием полиэстерным фильтратором. Он необходим для корректной работы системы — чтобы фильтр действовал, вода подается на мембрану под давлением, при этом слой полиэстера создает сопротивление на пути водного потока и препятствует его выходу через очиститель. При его отсутствии вода под давлением беспрепятственно проходит через фильтр в продольном направлении, не продавливаясь в мембрану и затем в дренажную трубу.

Работа мембранного рулонного фильтра состоит из следующей последовательности технологических операций:

  • Очищаемая вода поступает в торцевую часть фильтра и проходит вдоль мембраны, с этого конца внутренняя пластиковая трубка запаяна и не имеет дефрагментации.
  • С другого конца корпус закрывает крышка с выходным штуцером малого диаметра, ограничивающего давление. В результате внутри появляется избыточный напор и очищаемая вода продавливается сквозь ряд мембранных фильтров к круглым отверстиям на центральной трубе.
  • В процессе продавливания все частицы, размер которых превышает диаметр ячеек мембраны, собираются в полиэстерном фильтраторе и между ячейками сетки, а затем вымываются проходящим потоком воды.

Важно: При отсутствии промывания фильтрующей системы проточной водой мелкие ячейки мембраны забиваются вредными примесями в короткое время и она перестает выполнять свои функции.

  • Таким образом, фильтруемая жидкость движется одновременно вдоль фильтра и в радиальном направлении, просачиваясь в мембрану, скрученную в спираль. Очищенная вода (пермеат) через центральную дренажную трубу выводится наружу, а загрязненная жидкость (концентрат) с высоким содержанием вредных примесей собирается у выходного торца фильтра после продольного прохождения через сетку и полиэстеровую подложку.
  • Солевой концентрат отводится в накопительную емкость для дальнейшего использования в бытовом хозяйстве или утилизируется путем слива в канализационную систему.

Как видно из принципа действия данного фильтра, значительная часть очищаемой жидкости (около 3/4) содержит высокую концентрацию вредных примесей и сливается, поэтому при бытовом использовании подобных систем следует продумывать вопрос о рациональном использовании этих водных объемов в хозяйственных целях.

Совет: Неплохой выход из ситуации большого расхода воды в квартирах с приборами учета — врезка в трубопровод тройника с обратным клапаном, через который загрязненный раствор направляют обратно в водопроводную систему. Фильтр включают во время бытового использования воды (мытье посуды, принятие ванн) и концентрат сразу расходуется в хозяйственных целях.


Конструкция фильтрующей системы на основе мембран

В продаже имеется большое количество бытовых фильтрующих систем мембранного типа от отечественного производителя, заслуживших положительные отзывы потребителей, к ним относят известные бренды: Аквафор, Гейзер, Исток, Новая вода, Atoll, Роса. Типовые модели с обратным осмосом состоят из следующих элементов:

  • Фильтр первичной очистки . Из водного потока удаляет крупные механические частицы размером от 5 мкм, мелкие песчинки, взвешенную грязь, ржавчину. Картридж данного фильтра часто изготавливают из вспененного полипропилена, с его помощью производится механическое очищение воды от взвешенных загрязнений.
  • Адсорбционный фильтр . Фильтрующим элементом очистителя является активированный уголь, поверхностный слой которого впитывает в себя вредные вещества из воды. Уголь отлично очищает воду от хлорных соединений, органических примесей.
  • Высококачественный фильтр доочистки . Наполнителем картриджа является брикетированный активированный уголь, удаляющий из жидкости механические частицы диаметром до 1 мкм и производящий доочистку хлорных соединений и органики.
  • Обратноосмотический мембранный фильтр . Удаляет из воды все частицы размером от 0,001 до 0,0001 мкм или 96 – 98% всех загрязнений, в эту категорию попадают нерастворимые двухвалентные оксиды металлов (марганец, калий, железо), органические примеси, бактерии и вирусы.
  • Минерализатор. Очищенная стерилизованная дистиллированная вода не имеет в составе полезных для здоровья человека минералов и солей, которые были удалены в процессе очистки вместе с вредными примесями. При использовании в качестве питьевой, ее пропускают через проточный минерализатор с минеральными солями, насыщая воду, они повышают ее вкусовые качества и делают полезной для здоровья.
  • Накопительный бак . Питьевую воду отправляют в металлический накопительный бак с целью использования в любое время без ожидания завершения процесса очистки.
  • Электронный модуль управления (дополнительно, нужен при низком давлении воды в водопроводе) . Запускает нагнетательную помпу при опустошении накопительного бака, производит очистку системы в автоматическом режиме.

Классификация мембран по размерам пор

Мембраной называют тонкую эластичную пленку, закрепленную на несущей поверхности по периметру, данное определение не слишком подходит для систем водоочистки, где назначение мембранных гибких пластин — фильтрация воды.

Поры используемых в водоочистке материалов способны пропускать примеси разных диаметров, учитывая данный фактор, сложилась система разделения мембран по размерным параметрам пропускаемых частиц на следующие группы:

  • Микрофильтрационные (1-0,1 мкм) . Включения с таким размером имеет мутная вода и сточные серые стоки, подобные фильтры также используются для очистки воды от крупных коллоидных частиц и крупнодисперсных органических примесей. Фильтры подобной очистки относят к разряду механических, в бытовых системах предварительной водоочистки аналогичные функции выполняет полипропиленовый картридж.
  • Ультрафильтрационные (0,1-0,01 мкм) . Отсеивают мелкие коллоидные примеси и высокомолекулярные соединения, водоросли, бактерии, трехвалентные нерастворимые оксиды металлов.
  • Нанофильтрационные (0,01-0,001 мкм). Используются в системах для умягчения воды, способны очищать жидкость от растворимых двухвалентных оксидов железа, калия, марганца, хлора, различного вида красителей.
  • Обратноосмотические (0,001-0,0001 мкм) . Фильтры глубокой очистки эффективностью до 99%, получили широкое распространение в промышленном опреснении морской воды. Удаляют из жидкости все соли и оксиды металлов, бактерии, нефтепродукты, красители, пестициды. Системы обратного осмоса широко используются в медицине, пищевой и химической промышленности для получения стерилизованной воды.

При выборе водоочистной установки важным критерием является давление в системе, для больших размеров пор в мембранах достаточно 1 — 2 атмосфер, наивысший напор требуется для фильтров обратного осмоса — минимум 3 атмосферы.


Типы мембранных фильтров по конструктивному исполнению

Помимо размерных параметров, мембранные фильтры в зависимости от конструктивного исполнения делят на следующие виды:

Дисковые . Данный вид фильтров нечасто используют в бытовом хозяйстве, микропористые мембраны чаще применяют в промышленной сфере для водоочистки больших объемов воды в крупногабаритных установках. Материалом их изготовления является капрон, полиамид, полиэфирсульфон, фторопласт, полиэтилентерефталат (лавсан), ацетилцеллюлоза. В процессе производства очистительные элементы с мембранами располагают в фильтрах следующими способами:

  • бесподложечным, фильтратор выполнен из однородного материала;
  • армированным с тканевой или полимерной сетчатой основой;
  • подложечным — с основой из прочного крупнопористого материала.

На рынке водоочистного оборудования можно приобрести дисковые Гейзер из полимерных материалов со встроенными канавками, пропускающие частицы размером от 100 мкм.


Трубчатые. Имеют простую конструкцию в виде трубки из пористого материала, в которую фильтруемая жидкость поступает через торцевую крышку с отверстиями и затем выдавливается наружу под давлением, проходя через поры мембранного очистителя. Материалами изготовления корпуса мелкопористой мембраны могут быть керамика, металлокерамика, пластик, сплавы различных металлов.

Рулонные . Устройство подобных фильтров было рассмотрено выше, они представляют собой намотанный на дренажную трубку сэндвич из пленки обратного осмоса, полиэстеровой подложки, полиэтиленовой пленки и сетки. При их работе вода из торцевой части попадает на мембрану и стекает по спирали в дренажные отверстия, а концентрат с примесями утилизируется или используется для хозяйственных нужд.

Половолоконные. Данный тип мембран рассчитан для промышленного применения, представляют собой очень мелкие фильтрационные трубочки, сложенные в пучок. Очищаемая жидкость проходит сквозь капилляры в их стенках, диаметр которых препятствует прохождению примесей более крупных размеров. Подобную конструкцию имеют ультрафильтрационные мембраны, отсеивающие частицы диаметром от 0,1 мкм.


Треково-мембранные . Подобного вида мембраны изготавливают из тонких пленочных полимеров толщиной 12 — 23 мкм методом бомбардировки поверхности ионами криптона, в результате появляются сквозные каналы с фиксированным диаметром до 0,05 мкм (для полиэтилентерефталатной пленки). Одно из простейших приспособлений на их основе, используемое для водоочистки в бытовом хозяйстве, представляет собой пленочную мембрану с диаметром отверстий 0,2 — 0,4 мкм, помещенную в закрытый пластиковый футляр.

Для работы устройства его корпус погружают в емкость с водой и подключают сливную трубку, опуская ее ниже уровня жидкости в резервуар (банку) для сбора отфильтрованной воды. Перед фильтрованием воду подсасывают и после того, как струйный режим перейдет в капельный (мембранный фильтратор включается в работу), начинают собирать фильтрат.

Трековые мембранные фильтры тонкой очистки воды, средняя цена которых порядка 700 руб., не требуют электроэнергии, приспособление можно брать с собой на дачу, в отпуск с условиями дикого проживания, туристический поход. Преимуществом трековой системы является простота в обслуживании — после забивания пор походный мембранный фильтр для очистки воды разбирают, снимают очиститель, протирают его чистой губкой от налета под струей воды и погружают в раствор 5% лимонной кислоты для восстановления.

На рынке водоочистительного оборудования реализуется широкий ряд трековых фильтраторов, популярные бренды — Нерокс, Капель, Снежинка.


Плюсы и минусы мембранных фильтров

Среди всех разновидностей мембранных фильтров в бытовом хозяйстве нашли применение установки обратного осмоса с начальной стоимостью около 6000 руб., обладающие высочайшей эффективностью водоочистки. К их положительным качествам относят:

  • Высокую чистоту отфильтрованной воды, в которой отсутствуют все виды бактерий, микробов, вирусов, оксиды металлов, вызывающие накипь.
  • Система фильтрации имеет простую конструкцию и может самостоятельно обслуживаться потребителем.
  • В отличие от популярных бытовых альтернативных методов очистки с аэрационными установками и ионообменными смолами, система обратного осмоса занимает небольшое пространство под мойкой.
  • Срок эксплуатации мембранного фильтра благодаря технологии с постоянной прочисткой его поверхности проточной водой, превышает время использования картриджей в системах кувшинного типа и может доходить до 2-х лет. Системы, где предусмотрена автоматическая очистка мембраны, работают без смены фильтра 5 и более лет.

Несмотря на высочайшее качество очистки, мембранный фильтр с обратным осмосом имеет ряд недостатков, ограничивающих его широкое применение в быту:

  • При эксплуатации установок с данным методом фильтрации эффективно очищается лишь 1/4 часть поступающей воды, остальную придется сливать в канализацию или искать ей применение в хозяйственных целях.
  • Высокое качество очистки требует сильного давления в системе до 10 атмосфер для продавливания воды через мелкоячеистую мембрану, такой напор можно достичь только с использованием электронасоса, для работы которого требуется электроэнергия — это существенно повышает эксплуатационные расходы.
  • Для корректной работы мембраны обратного осмоса вода перед фильтрацией должна проходить предварительную очистку — в результате дополнительно используют три фильтра (стандартный комплект Аквафор трио, Роса). В двух из них угольные картриджи подлежат обязательной периодической замене, что приводит к дополнительным расходам.

  • Проходя через систему обратного осмоса, вода теряет полезные для здоровья человека минералы и становится безвкусной, поэтому для улучшения вкусовых качеств используют дополнительный узел минерализации с расходными компонентами.
  • По сравнению с другими системами, фильтр обратного осмоса имеет довольно низкую производительность (максимум 0,12 л/мин у популярной модели Гейзер Престиж) и используется только для получения питьевой воды.
  • Многие пользователи жалуются на шумную работу автоматической системы, включающей нагнетающий воду электронасос после опустошения накопительного бака, иногда электроника путается в работе и постоянно включает и отключает помпу.
  • Средняя стоимость обратноосмотического фильтратора около 7500 руб. без нагнетательной помпы — такие расходы не каждому по карману.

Как чистить фильтр обратного осмоса

Необходимость и периодичность очистки обратноосмотической установки зависит от качества воды, объемов фильтрации и давления в системе, при наличии автоматики со встроенной функцией водоочистки срок использования картриджа может доходить до 6 лет.

Если в конструкции установки не предусмотрена возможность автоматического обслуживание фильтра, его можно промыть самостоятельно одним из следующих методов:

  • Достать картридж и направить в него струю воды в обратном направлении, из-за небольшого давления она будет проходить фильтрующие слои насквозь, вымывая отложения. После промывки фильтр можно положить в воду с лимонной кислотой на несколько часов.
  • Современные конструкции бытовых фильтров отличаются невысокой прочностью корпуса, состоящего из нескольких слоев полимерной пленки. Ее довольно просто размотать, затем выпрямить 2 спиральных рукава, в которых легко отделить фильтр, сетку и подложку друг от друга. Можно опустить всю систему в емкость с водой и тщательно промыть ее составляющие с дальнейшим отстаиванием в растворе 5% лимонной кислоты. После высыхания картридж легко собрать обратно, скрепив корпус скотчем или изолентой.

В бытовом хозяйстве для получения питьевой воды высокого качества отлично зарекомендовал себя мембранный очиститель воды с обратным осмосом, производящий 95 — 98% фильтрование всех вредных и полезных для организма человека компонентов. Несмотря на массу недостатков (низкая производительность с утилизацией 3/4 водного объема, высокие эксплуатационные расходы, отсутствие полезных минералов) система не имеет конкурентов по качеству фильтрования и является лучшей для получения сверхчистой питьевой воды из коммунальных магистралей и индивидуальных водных источников.

Видео

Принцип работы системы обратного осмоса

Как рулонная мембрана фильтрует воду и ее устройство

Фильтр с трековой мембраной – как использовать

Один из самых популярных современных методов фильтрации. Окружающая природная среда в настоящие время находится в таком состоянии, что никто не уверен, что на самом деле он пьет или использует в пищу.

Водопользование во всем мире достигло такого уровня, при котором восстанавливаться самостоятельно водные источники попросту не успевают. Уровень загрязненности природных и сточных вод постоянно растет.

Традиционные технологии не могут обеспечить необходимую эффективную очистку воды. Освобождение от всех существующих видов загрязнения требует применения фильтрующих технологий, которые сами были бы экологически чистыми. Это заставляет постоянно усовершенствовать новые технологии, которые позволят быстро, эффективно и экономически выгодно очистить природные и сточные воды.

Мембранная система очистки воды является на сегодняшний день самой передовой технологией. В основе таких систем лежат полупроницаемые пористые мембраны, через которые проходит водный поток и очищает его от примесей. Мембранные системы задерживают загрязнения и действуют как тончайшие сита. Ненужные удержанные вещества концентрируются в потоке (концентрат), который не накапливается, а выводится из системы. Очищенная вода проходит через мембрану в виде фильтрата (пермеата). Чем меньше поры мембран, тем выше степень очистки, но и тем большее давление необходимо применить для фильтрации. Мембранные системы очистки воды в зависимости от создаваемого внутри них давления делятся на системы низкого, среднего и высокого давления. Фильтры, работающие с давлением до 6 атмосфер чаще всего применяют для очистки пресной воды от всякого рода примесей. Системы среднего давления до 40 атмосфер служат для деминерализации воды. С высоким — более 40 атмосфер - для деминерализации солевых растворов или очистки сточных вод.

Принцип работы традиционных основан на прохождении воды через фильтрующую среду, в которой, в конечном итоге, накапливаются загрязнения. Это приводит к необходимости регенерации и дезинфекции среды особыми растворами или вообще к ее замене. Еще в 18 веке было открыто явление самопроизвольного прохождения растворителя через пленку. Если взять два раствора — менее концентрированный и более концентрированный, и разделить их пленкой, то растворитель из менее концентрированного раствора будет переходить в более концентрированный.

Явление назвали осмосом, а пленку мембраной. В шестидесятые годы открыли, что при увеличении давления в концентрированном растворе (выше осмотического), будет протекать обратный процесс - молекулы растворителя начинают переходить из концентрированного раствора в разбавленный. Таким образом, явление обратного осмоса стали применять для очистки и опреснения воды в подводных лодках. Степень очистки можно регулировать, применяя мембранные фильтры с порами разного диаметра. Ультрафильтрационные мембраны убирают микроорганизмы, органические соединения и коллоидные частицы, обратноосмотические - до 97-99% всех примесей, пропуская, теоретически, только молекулы воды.

Мембранные системы очистки активно применяются в производстве продуктов питания, лекарственных средств, электронике и т. д. Современные разработки позволяют значительно уменьшать их стоимость, благодаря этому появилась возможность употреблять их в быту для фильтрации питьевой воды. Построил особняк с баней и бассейном - не жалей денег на очистку воды для них. Голубая вода для собственной бани не окажет вредного влияния на кожу, а огромный бассейн будет выглядеть притягательно.

Мембранная система очистки воды имеет ряд преимуществ: загрязнения не скапливаются, экологическая чистота, простота эксплуатации и малогабаритность и высокая степень автоматизации. Такая система позволяет получать особо чистую воду без примесей. А срок службы зависит от состава исходной воды. Пагубное воздействие на них оказывают соли жесткости, растворенное железо, органические соединения. Фильтр будет служить дольше, если будет произведена , в итоге это обойдется дешевле, чем частая замена картриджей.

Продолжаем подраздел " " статьёй . Которая вообще-то должна была бы появиться раньше, чем статья "Ультрафильтрация для обеззараживания воды ", потому что ультрафильтрация — это подраздел большой группы мембранных систем очистки воды. И, если вы заметили, мы в разделе "Вода " стараемся двигаться от общего к частям. Однако, ультрафильтрация — это частный случай . И поэтому, чтобы не нарушать последовательность, мы забежали несколько вперёд. Но мы вернулись.

Мембранные системы очистки воды — это практически самые современные технологии очистки воды (и не только воды), которые широко используются в промышленности. Конечно, существуют и более современные технологии, не связанные с водой — но до их серийного производства пройдёт ещё очень много времени.

Почему мембранные системы очистки воды называются мембранными? Потому что в качестве рабочего элемента используется мембрана. Что такое мембрана? Мембрана — это полупроницаемый барьер из самых разнообразных материалов (металл, пластик, керамика), который что-то пропускает, а что-то нет. Иными словами, этот барьер позволяет разделять смеси на составляющие их компоненты.

Простой пример: мы имеем обычную воду. Это не что иное, как раствор (или смесь) воды и разнообразных вредных и ненужных примесей. И при применении мембранных систем очистки воды примеси отсеиваются, а вода остаётся. Чистая 🙂

Обратите внимание, мы не зря использовали слово "отсеиваются", потому что ближайший работающий по похожей технологии бытовой прибор — это сито для муки . Так, когда мы пользуемся ситом, то просеиваем муку (которая проходит через полупроницаемый барьер, сито), и выкидываем

  • грязь,
  • комки,
  • тараканов и т.д.

— которые из-за своих размеров не проходят через полупроницаемый барьер.

Именно потому, что мембранные системы очистки воды используют принцип сита, отсеивая молекулы, их иногда называют "молекулярным ситом ". Конечно, строго говоря, самые маленькие молекулы отсеивают не все мембранные системы, а только система обратного осмоса, но это ведь уже нюансы. Тем более что молекулярное сито — это звучит гордо 🙂

Вы можете сказать: "Но, позвольте, ведь воды — это тоже, получается, мембранный процесс? Ведь там есть

  • с одной стороны грязная вода — та самая смесь,
  • есть полупроницаемый барьер — картридж (на котором задержаны примеси),
  • и есть очищенная вода…"

На самом деле, в обще-теоретическом смысле, это именно так и есть. Но мембрана и картридж отличаются как день и ночь. В частности, по своему строению, благодаря чему картриджи механической фильтрации могут удалять лишь крупные примеси (типа песка или ржавчины), а мембраны — все намного более мелкие вещества.

Так, картридж — это просто куча чего-то, что мешает проходить грязи, грязь забивает картридж. По своей сути, первые мембраны выглядели и работали так же, как и картриджи для механической очистки — и забивались, как и обычные картриджи. Но постепенно технология создания мембран совершенствовалась, и современные мембраны вообще не похожи на картриджи. Как минимум, они очень тонкие (примерно как лист бумаги или чуть толще, если учитывать подложку). Ну и как максимум — они намного лучшеразделяют смеси.

Вернёмся к нашим ситам. Точно так же, как сито бывает

  • крупным,
  • мелким и
  • сверхмелким,

мембраны в свою очередь делятся на различные категории по тому, что именно они пропускают, а что нет. Способность мембраны разделять зависит от двух важных вещей — от строения самой мембраны, и от того, за счёт чего происходит разделение.

Сначала разберёмся, за счёт чего происходит разделение на мембранах.

Разделение на мембранах происходит за счёт того, что с одной стороны у мембраны чего-то больше, а чего-то — нет. И с той стороны, где избыток, прилагается усилие в сторону недостатка. Например, с одной стороны больше содержания спирта, а с другой спирта нет. Мембрана пропускает спирт, и не пропускает всё остальное. Что происходит? Спирт постепенно просачивается на другую сторону в совершенно очищенном виде.

С помощью чего делается так, что с одной стороны у мембраны чего-то больше, а с другой — меньше? Разберём это на примере сита. Так, почему человек может просеять муку?

  1. Ну, для начала он положил сверху на сито муку (то есть, с одной стороны избыток муки).
  2. Во-вторых, он снизу оставил пустое пространство, чтобы муке было куда сыпаться (то есть, где муки нет).
  3. Ну и, наконец, самое главное. Человек использует потряхивание (+ силу тяжести), прикладывает силу для того, чтобы мука начала просеиваться.

Таким образом, выполняется главная задача сита — отделить муку от тараканов, мух и камешков. Которые больше, чем ячейки в сите и поэтому не могут пройти на ту сторону.

Точно так же и в мембранных технологиях. С одной стороны смесь веществ, среди которых есть нужные и ненужные. С другой стороны ничего подобного нет. В лучшем случае, там только нужные (или только ненужные — смотря что пропускает барьер) вещества. И, наконец, на смесь веществ действует та или иная сила. Это может быть

  • давление,
  • температура,
  • концентрация,
  • какие-нибудь ещё процессы.

Результат такой же, как и у сита — мухи отдельно, котлеты отдельно. То есть, ненужные вещества в одну сторону, нужные — в другую.

Наиболее распространены мембраны, действующая сила которых — давление. Попросту с одной стороны на смесь веществ действует давление. Эти процессы имеют своё научное название (кому интересно — баромембранные процессы). В их состав входит и уже упоминавшаяся ультрафильтрация. Кроме неё к подобным мембранным системам очистки воды относят:

  • микрофильтрацию
  • нанофильтрацию
  • гиперфильтрацию (обратный осмос).

В целом мембранные системы очистки воды в зависимости от диаметра ячеек и размеров удаляемых веществ выглядят так:

Ну а подробнее про разновидности мембранных систем очистки воды мы поговорим в следующих статьях.

Но вы можете быть уверены — если вам предлагают фильтр на основе мембранных систем — это более глубокая очистка, чем если бы это был фильтр механической очистки воды.

По материалам http://voda.blox.ua/2008/06/Kak-vybrat-filtr-dlya-vody-21.html

Цугунов Антон Валерьевич

Время на чтение: 5 минут

Невкусная вода из-под крана – это бич жителей больших городов. Даже после кипячения она оставляет неприятный привкус во рту. Кроме того, некоторые специалисты утверждают, что даже кипячение не может очистить ее от вредных примесей и микробов. Если вы живете в квартире и страдаете из-за плохой воды, то вам поможет мембранный фильтр для очистки воды.

Что такое мембранный фильтр?

Все фильтры выполняют функцию задержания вредных примесей. На выходе мы получаем вкусную воду, которую можно кипятить или пить сразу. Мембранная система, работающая по принципу обратного осмоса, не пропускает никакие вредные вещества, не накапливает их в себе, а благодаря своей конструкции смывает в дренаж. Она имеет поры, через которые могут пройти только вода и кислород. Существует несколько видов материалов для производства такого фильтра: лавсан, полиуретан и другие.

Первые подобные системы были изобретены еще в XIX веке, но прототип современной мембраны выпустили только в 1960-х годах. Считается, что это лучшие системы для очистки воды из всех существующих. Они задерживают не только крупный мусор, но и мелкие частицы, очищая воду на молекулярном уровне.

Все крупные российские и зарубежные компании по изготовлению фильтров для воды имеют в своем ассортименте мембранные конструкции. В первую очередь они востребованы среди жителей квартир в больших городах.

Внешне устройство представляет собой пластиковый цилиндрический короб, внутри которого находится мембрана и один или несколько предфильтров. Оно подключается к холодной воде и выводится на раковину отдельным краном. Каждый фильтр имеет свой срок службы, так как с течением времени он загрязняется и не может выполнять свои функции.

Существуют мембранные фильтры, которые работают по-другому. Они помещаются в емкость с водой, она проходит через мембрану и по принципу сообщающихся сосудов выходит наружу очищенной. Применение такого фильтра оправдано в походных условиях, когда рядом нет водопровода.

В походном фильтре необходимо время от времени чистить мембранные картриджи. Можно промывать их чистой водой или использовать специальные химические средства. Их выбирают в зависимости от типа загрязнений. Кислотные хорошо удаляют соли, а щелочные – органические и биологические соединения.

Разновидности по типу мембраны

Существует несколько типов мембранных фильтрующих систем. Они отличаются по виду конструкции и размеру пор. Лучшими считаются фильтры с маленькими отверстиями, так как они хорошо очищают воду.

Типы мембран:

  1. Микрофильтрационная. Обеспечивает грубую очистку воды, используется на подготовительном этапе. Такой фильтр справится с мутной сточной водой, но в дальнейшем ей потребуется более тонкая очистка.
  2. Ультрафильтрационная. Этот вид мембраны может очищать воду от высокомолекулярных соединений, бактерий. Обычно применяется на промышленных предприятиях, так как не убирает из воды соли.
  3. Нанофильтрационная. Хорошо подходит для жесткой домашней воды. Кроме бактерий, убирает из воды примеси хлора и тяжелых металлов.
  4. . Такая система имеет самые мелкие отверстия и задерживает все вредные для человека вещества и загрязнения. На 98 % нейтрализуются соли, бактерии, вирусы, продукты нефтепереработки. С помощью таких фильтров можно очищать и опреснять морскую воду, их применяют при производстве бутилированной воды, в фармакологии и микробиологии.

Виды по типу конструкции

По типу конструкции фильтры делят на:

  • Трубчатые. Очищающий элемент представляет собой пористые трубки. Они могут быть изготовлены из металлокерамики, пластмассы, . Диаметр трубы может доходить до нескольких сантиметров. Существуют симметричные и асимметричные мембраны. У первых поры расположены равномерно, у вторых одна стенка имеет большую концентрацию отверстий, чем другая. Вода подается под давлением в эту трубу, и на выходе получается чистая жидкость, а в отдельной емкости – концентрат вредных веществ.
  • Рулонные. Этот фильтр представляет собой мембрану, накрученную, как рулон, на основную трубу. Через специальное отверстие вода попадает на нее и течет по спирали, параллельно очищаясь. Чистая вода стекает по основной трубе, а вредные вещества выходят из другого отверстия. Такие системы дешевы в производстве, но в процессе эксплуатации быстро загрязняются.
  • Половолоконные. Состоят из мембранных трубочек, которые помещены в аппарат для фильтрации. Это существенно увеличивает рабочую поверхность, но такие фильтры быстро засоряются, и их сложно чистить.
  • Дисковые. Они имеют только лабораторное применение и не применяются для очистки воды в доме для питья. Фильтрующий элемент выполнен в виде плоского диска. Принцип работы такой конструкции состоит в том, что вода заливается в резервуар, в котором ходит поршень с мембраной. Ее можно сравнить с бытовым френч-прессом, Только фильтр имеет несколько поршней для увеличения количества фильтруемой воды. Чистая вода идет в кран к потребителю, а вредные вещества оседают в специальном резервуаре.

Не стоит беспокоиться, что все слои диска имеют химическое происхождение, применение такого фильтра абсолютно безопасно для здоровья.

Плюсы и минусы

По сравнению с другими типами фильтрующих систем, у мембранной конструкции есть следующие преимущества:

  • Простота эксплуатации и обслуживания.
  • Хорошая степень очистки.
  • Небольшие размеры.
  • Наличие походных разновидностей.

Некоторые отрасли промышленности предъявляют повышенные требования к качеству воды. Например, для приготовления лекарств, микросхем она должна быть дистиллированной. Такое качество можно получить используя мембранные методы очистки воды.

К ним относятся: микрофильтрация, ультрафильтрация, обратный осмос, нанофильтрация, электродиализ. Принцип действия мембранных систем очистки воды основан на способности специально разработанных мембран пропускать молекулы воды и задерживать молекулы и ионы солей и других веществ, растворенных в воде. Вода, прошедшая через мембрану называется фильтратом, а оставшаяся - концентратом.

На фото: Мембранный элемент - Filmtec BW

Теория полупроницаемых мембран

Существует несколько теорий, объясняющих принцип действия полупроницаемых мембран:

1) Молекулы воды меньше по размерам, чем молекулы растворенных в ней веществ, поэтому они просачиваются сквозь поры мембраны, а примеси нет;

2) Вода диффудирует через перегородку быстрее за счет более высокого коэффициента диффузии;

3) Вода, находящаяся в толще мембраны в капиллярном или связанном состоянии, постоянно образует новые водородные связи с молекулами воды, находящимися в концентрате и таким образом «вытягивает» только чистую воду, потому что соли не могут образовывать водородные связи.

Материал и классификация мембран

Полупроницаемые мембраны – это главный элемент в системе. От их качества и типа напрямую зависит результат умягчения (удаления солей). Они должны быть достаточно прочными, селективными (способными пропускать некоторые вещества и задерживать другие), химически стойкими к растворам солей, долговечными. Основные материалы для производства мембран: полимеры синтетические и растительного происхождения, смолы, силикатные стекла, металлы, керамические материалы, стенки внутренних органов и т.д. Размер пор мембран колеблется от 0,1 до 10 мкм.

Считается, что разделение мембранной очистки на отдельные методы основано на размере пор мембран (по возрастанию):

1) Обратный осмос;

2) Нанофильтрация;

3) Ультрафильтрация;

4) Микрофильтрация.

Соответственно, методы дают разное качество очистки и имеют различные области применения.

Обратный осмос и ультрафильтрация – в фармакологии, медицине, пищевой промышленности;

микрофильтрация и нанофильтрация – обезжелезивание воды. В некоторых литературных источниках обратный осмос и ультрафильтрация преподаются как синонимами. Впрочем схема у них у всех одинакова: насосы подают очищаемую воду под необходимым давлением в ёмкость, где она проходит через мембрану. Отличие электродиализа состоит в использовании электрического тока, как движущей силы, вместо давления. В этом случае в емкость опускаются электроды (катод и анод), которые вызывают гидролиз солей и направленное движение ионов. Обычно электродиализные установки имеют не одну, а несколько полупроницаемых мембран.

Мембранные технологии отличаются от простого фильтрования тем, что загрязнения не скапливаются в мембране, а остается у ее поверхности в жидкости. Они удаляются следующими способами: поперечным потоком, обратной промывкой, ультразвуком.