Симметрия в пространстве.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

СИММЕТРИЯ В ПРОСТРАНСТВЕ А А 1 О Точки А и А1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА1 . Точка О считается симметричной самой себе.

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А1 называются симметричными относительно прямой (ось симметрии), если прямая проходит через середину отрезка АА1 и перпендикулярна этому отрезку. Каждая точка прямой а считается симметричной самой себе. Лист, снежинка, бабочка – примеры осевой симметрии. А 1 А а

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А 1 называются симметричными относительно плоскости (плоскость симметрии), если эта плоскость проходит через середину отрезка АА 1 и перпендикулярна этому отрезку. Каждая точка плоскости считается симметричной самой себе. А А 1

Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией. А 1 А О А 1 А О

С симметрией мы часто встречаемся в природе, архитектуре, технике, быту. Так, многие здания симметричны относительно плоскости, например главное здание Московского государственного университета, некоторые виды деталей имеют ось симметрии. Почти все кристаллы, встречающиеся в природе, имеют центр, ось или плоскость симметрии. В геометрии центр, оси и плоскости симметрии многогранника называются элементами симметрии этого многогранника.

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ


По теме: методические разработки, презентации и конспекты

Методическое обоснование урока. Использование знаний из физики, астрономии, МХК, биологии на уроке геометрии при обобщении систематизации сведений по теме: «Симметрия в пространстве. Правил...

На данном уроке мы опишем виды симметрии в пространстве, познакомимся с понятием правильного многогранника.

Как и в планиметрии, в пространстве мы будем рассматривать симметрию относительно точки и относительно прямой, но дополнительно появится симметрия относительно плоскости.

Определение.

Точки А и называются симметричными относительно точки О (центра симметрии), если О - середина отрезка . Точка О симметрична сама себе.

Чтобы для заданной точки А получить симметричную ей точку относительно точки О, нужно провести прямую через точки А и О, отложить от точки О отрезок, равный ОА, и получить искомую точку (рисунок 1).

Рис. 1. Симметрия относительно точки

Аналогично точки В и симметричны относительно точки О, т. к. О - середина отрезка .

Так, задан закон, согласно которому каждая точка плоскости переходит в другую точку плоскости, и мы говорили, что при этом сохраняются любые расстояния, то есть .

Рассмотрим симметрию относительно прямой в пространстве.

Чтобы получить для заданной точки А симметричную точку относительно некоторой прямой а, нужно из точки А на прямую опустить перпендикуляр и отложить на нем равный отрезок (рисунок 2).

Рис. 2. Симметрия относительно прямой в пространстве

Определение.

Точки А и называются симметричными относительно прямой а (ось симметрии) если прямая а проходит через середину отрезка и перпендикулярна ему. Каждая точка прямой симметрична сама себе.

Определение.

Точки А и называются симметричными относительно плоскости (плоскость симметрии) если плоскость проходит через середину отрезка и перпендикулярна ему. Каждая точка плоскости симметрична сама себе (рисунок 3).

Рис. 3. Симметрия относительно плоскости

Некоторые геометрические фигуры могут иметь центр симметрии, ось симметрии, плоскость симметрии.

Определение.

Точка О называется центром симметрии фигуры если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.

Например, в параллелограмме и параллелепипеде точка пересечения всех диагоналей является центром симметрии. Проиллюстрируем для параллелепипеда.

Рис. 4. Центр симметрии параллелепипеда

Так, при симметрии относительно точки О в параллелепипеде точка А переходит в точку , точка В - в точку и т. д., таким образом, параллелепипед переходит сам в себя.

Определение.

Прямая называется осью симметрии фигуры если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.

Например, каждая диагональ ромба является для него осью симметрии, ромб переходит сам в себя при симметрии относительно любой из диагоналей.

Рассмотрим пример в пространстве - прямоугольный параллелепипед (боковые ребра перпендикулярны основаниям, в основаниях - равные прямоугольники). Такой параллелепипед имеет оси симметрии. Одна из них проходит через центр симметрии параллелепипеда (точку пересечения диагоналей) и центры верхнего и нижнего оснований.

Определение.

Плоскость называется плоскостью симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.

Например, прямоугольный параллелепипед имеет плоскости симметрии. Одна из них проходит через середины противоположных ребер верхнего и нижнего оснований (рисунок 5).

Рис. 5. Плоскость симметрии прямоугольного параллелепипеда

Элементы симметрии присущи правильным многогранникам.

Определение.

Выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники, а в каждой вершине сходится одинаковое число ребер.

Теорема.

Не существует правильного многогранника, гранями которого являются правильные n-угольники при .

Доказательство:

Рассмотрим случай, когда - правильный шестиугольник. Все его внутренние углы равны :

Тогда при внутренние углы будут и больше.

В каждой вершине многогранника сходятся не менее трех ребер, значит, в каждой вершине содержится не менее трех плоских углов. Их общая сумма (при условии, что каждый больше либо равен ) больше либо равна . Это противоречит утверждению: в выпуклом многограннике сумма плоских всех углов при каждой вершине меньше .

Теорема доказана.

Куб (рисунок 6):

Рис. 6. Куб

Куб составлен из шести квадратов; квадрат - это правильный многоугольник;

Каждая вершина - это вершина трех квадратов, например вершина А - общая для граней-квадратов ABCD, ;

Сумма всех плоских углов при каждой вершине составляет , т. к. состоит из трех прямых углов. Это меньше , что удовлетворяет понятию правильного многогранника;

Куб имеет центр симметрии - точка пересечения диагоналей;

Куб имеет оси симметрии, например прямые а и b (рисунок 6), где прямая а проходит через середины противоположных граней, а b - через середины противоположных ребер;

Куб имеет плоскости симметрии, например плоскость, которая проходит через прямые а и b.

2. Правильный тетраэдр (правильная треугольная пирамида, все ребра которой равны между собой):

Рис. 7. Правильный тетраэдр

Правильный тетраэдр составлен из четырех равносторонних треугольников;

Сумма всех плоских углов при каждой вершине составляет , т. к. правильный тетраэдр состоит из трех плоских углов по . Это меньше , что удовлетворяет понятию правильного многогранника;

Правильный тетраэдр имеет оси симметрии, они проходят через середины противоположных ребер, например прямая MN. Кроме того, MN - расстояние между скрещивающимися прямыми АВ и CD, MN перпендикулярно ребрам АВ и CD;

Правильный тетраэдр имеет плоскости симметрии, каждая проходит через ребро и середину противоположного ребра (рисунок 7);

Правильный тетраэдр не имеет центра симметрии.

3. Правильный октаэдр:

Состоит из восьми равносторонних треугольников;

В каждой вершине сходятся по четыре ребра;

Сумма всех плоских углов при каждой вершине составляет , т. к. правильный октаэдр состоит из четырех плоских углов по . Это меньше , что удовлетворяет понятию правильного многогранника.

4. Правильный икосаэдр:

Состоит из двадцати равносторонних треугольников;

В каждой вершине сходятся по пять ребер;

Сумма всех плоских углов при каждой вершине составляет , т. к. правильный икосаэдр состоит из пяти плоских углов по . Это меньше , что удовлетворяет понятию правильного многогранника.

5. Правильный додекаэдр:

Состоит из двенадцати правильных пятиугольников;

В каждой вершине сходятся по три ребра;

Сумма всех плоских углов при каждой вершине составляет . Это меньше , что удовлетворяет понятию правильного многогранника.

Итак, мы рассмотрели виды симметрии в пространстве и дали строгие определения. Также определили понятие правильного многогранника, рассмотрели примеры таких многогранников и их свойства.

Список литературы

  1. И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 2008. - 233 с.: ил.
  1. Matemonline.com ().
  2. Fmclass.ru ().
  3. 5klass.net ().

Домашнее задание

  1. Укажите количество осей симметрии прямоугольного параллелепипеда;
  2. укажите количество осей симметрии правильной пятиугольной призмы;
  3. укажите количество плоскостей симметрии октаэдра;
  4. постройте пирамиду, у которой есть все элементы симметрии.

§ 1 Что такое симметрия

Цитатой этого урока послужит высказывание известного ученого, создателя кибернетики Норберта Винера, которое очень точно выражает все то, о чем сегодня пойдет речь.

«Высшее назначение математики - находить красоту, гармонию и порядок в хаосе, который нас окружает».

Симметрия один из законов обеспечивающих гармонию вселенной, о ней мы и поведем сегодня речь и расширим те понятия, которые были введены на уроках планиметрии.

В повседневном языке слово симметрия употребляется в двух значениях. В одном смысле симметричное означает нечто, обладающее хорошим соотношением пропорций, уравновешенное, а симметрия обозначает тот вид согласованности отдельных частей, который объединяет их в единое целое. Красота тесно связана с симметрией. Об этом говорит, например, в своей книге о пропорциях Поликлет - ваятель, скульптуры которого служили предметом восхищения древних за их гармоничное совершенство. Образ весов является естественным связующим звеном, которое подводит ко второму смыслу слова симметрия, употребляемому в наше время: зеркальная симметрия - симметрия левого и правого, столь заметная в строении тел у высших животных и человека.

Зеркальная симметрия выступает как частный случай геометрического понятия симметрии, относящегося к таким операциям, как отражение или вращение.

Пифагорейцы считали наиболее совершенными геометрическими фигурами на плоскости — окружность, а в пространстве - сферу в силу их полной поворотной симметрии.

Симметрия в широком или узком смысле является той идеей, посредством которой человек на протяжении веков пытается постичь и создать порядок, красоту и совершенство. Так свойства пространства и времени ведут к симметрии, к закономерности в природе как проявлению ее гармонии

§ 2 Симметрия относительно точки

В планиметрии мы рассматривали фигуры, симметричные относительно точки и относительно прямой. В стереометрии рассматривают симметрию относительно точки, прямой и плоскости.

Точки А и А1 называются симметричными относительно точки О (центра симметрии), если О - середина отрезка АА1. Точка О считается симметричной самой себе. Примером центральной симметрии может послужить цветок или узор

§ 3 Симметрия относительно прямой

Точки А и А1 называются симметричными относительно прямой а (ось симметрии), если прямая а проходит через середину отрезка АА1 и перпендикулярна этому отрезку. Каждая точка прямой а считается симметричной самой себе.

Примером такой симметрии могут послужить не только прелестные бабочки, но и даже целые здания, такие как

корпус Московского государственного университета им. Ломоносова,

Храм Христа Спасителя,

мавзолей- мечеть Тадж-Махал.

§ 4 Симметрия относительно плоскости

В пространственной геометрии добавим симметрию относительно плоскости.

Точки А и А1 называются симметричными относительно плоскости α (плоскость симметрии), если плоскость α проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Каждая точка плоскости α считается симметричной самой себе.

Изучая стереометрию, можно также говорить о центре, оси и плоскости симметрии фигуры.

Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость симметрии), то говорят, что она обладает центральной (осевой, зеркальной) симметрией.

На рисунках вы сейчас можете увидеть прямоугольный параллелепипед, а так же его центр симметрии, ось симметрии, плоскость симметрии.

Параллелепипед, не являющийся прямоугольным, но являющийся прямой призмой, имеет плоскость (или плоскости, если его основание - ромб), ось и центр симметрии.

§ 5 Асимметрия

Фигура может иметь один или несколько центров симметрии (осей, плоскостей симметрии). Например, куб имеет только один центр симметрии и несколько осей и плоскостей симметрии. Существуют фигуры, имеющие бесконечно много центров, осей или плоскостей симметрии. Простейшими из таких фигур являются прямая и плоскость. И наоборот, существуют такие фигуры, которые не имеют центров, осей или плоскостей симметрии. В этом случае говорят еще об одном математическом понятии как асимметрия, которое обозначает отсутствие симметрии. Сегодня биологи и психологи, химики и врачи пытаются сообща справиться с загадками симметрии и разгадать тайны левого и правого. Каждый день мы смотрим в зеркало, но редко задумываемся о том, что в отражении правая рука превращается в левую. Зачем природа создала и дублировала некоторые функции полушарий, руки, ноги, глаза, а рот у человека один. Удивительно при всей нашей симметрии мы ассиметричны. Современные компьютерные технологии позволяют увидеть, каким бы был человек только из левых половин лица или из правых. Результат ошеломляет большинство увидевших получившиеся портреты. Право и левополушарные лица оказываются непохожими между собой. Оглянитесь вокруг, может быть, и вы увидите симметрию и асимметрию вокруг и восхититесь ею.

  1. Геометрия. 10 – 11 классы: учебник для общеобразоват. учреждений: базовый и профил. уровни / [ Л. С. Атанасян, В. Ф. Бутузов, С.Б. Кадомцев и др.]. – 22-е изд. – М. : Просвещение, 2013. – 255 с. : ил. – (МГУ - в школе)
  2. Учебно – методическое пособие в помощь школьному учителю Составитель Яровенко В.А. Поурочные разработки по геометрии к учебному комплекту Л. С. Атанасяна и др. (М. : Просвещение) 10 класс
  3. Рабинович Е. М. Задачи и упражнения на готовых чертежах. 10 – 11 классы. Геометрия. – М. : Илекса, 2006 . – 80 с.
  4. М. Я Выгодский Справочник по элементарной математике М. : АСТ Астрель, 2006. - 509с.
  5. Аванта+. Энциклопедия для детей. Том 11. Математика 2-е изд., перераб. - М.: Мир энциклопедий Аванта+: Астрель 2007. - 621 с. Ред. коллегия: М. Аксёнова, В. Володин, М. Самсонов

. Правильные многогранники.

Определение . Выпуклый многогранник называется правильным , если все его грани – равные правильные многоугольники и в каждой его вершине сходится одно и то же число рёбер.

Достаточно легко доказать, что правильных многогранников существует всего 5: правильный тетраэдр, правильный гексаэдр, правильный октаэдр, правильный икосаэдр, правильный додекаэдр. Этот поразительный факт дал повод древним мыслителям соотнести правильные многогранники и первоэлементы бытия.

Есть много интересных приложений теории многогранников. Одним из выдающихся результатов в данной области является теорема Эйлера , справедливая не только для правильных, но и для всех выпуклых многогранников.

Теорема : для выпуклых многогранников справедливо соотношение: Г + В – Р = 2 , где В – число вершин, Г – число граней, Р – число ребер.

Название многогранника

Количество граней (Г)

Количество вершин (В)

Количество рёбер (Р)

Первоэлемент бытия

тетраэдр

гексаэдр

икосаэдр

додекаэдр

Вселенная

четырехугольная пирамида

n – угольная пирамида

треугольная призма

n – угольная призма

Правильные многогранники обладают многими интересными свойствами. Одним из самых поразительных свойств является их двойственность: если соединить отрезками центры граней правильного гексаэдра (куба), то получится правильный октаэдр; и, наоборот, если соединить отрезками центры граней правильного октаэдра, то получится куб. Аналогично, двойственны правильные икосаэдр и додекаэдр. Правильный тетраэдр двойственен сам себе, т.е. если соединить отрезками центры граней правильного тетраэдра, то снова получится правильный тетраэдр.

. Симметрия в пространстве.

Определение . Точки А и В называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АВ . Точка О считается симметричной самой себе.

Определение . Точки А и В называются симметричными относительно прямой а (ось симметрии), если прямая а АВ и перпендикулярна этому отрезку. Каждая точка прямой а

Определение . Точки А и В называются симметричными относительно плоскости β (плоскости симметрии), если плоскость β проходит через середину отрезка АВ и перпендикулярна этому отрезку. Каждая точка плоскости β считается симметричной самой себе.

Определение . Точка (прямая, плоскость) называются центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно неё некоторой точке той же фигуры.

Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией. Центр, ось и плоскости симметрии многогранника называются элементами симметрии этого многогранника.

Пример . Правильный тетраэдр:

– не имеет центра симметрии;

– имеет три оси симметрии – прямые, проходящие через середины двух противоположных рёбер;

Имеет шесть плоскостей симметрии – плоскости, проходящие через ребро перпендикулярно противоположному (скрещивающемуся с первым) ребру тетраэдра.

Вопросы и задачи

    Сколько центров симметрии имеет:

а) параллелепипед;

б) правильная треугольная призма;

в) двугранный угол;

г) отрезок;

    Сколько осей симметрии имеет:

а) отрезок;

б) правильный треугольник;

    Сколько плоскостей симметрии имеет:

а) правильная четырёхугольная призма, отличная от куба;

б) правильная четырёхугольная пирамида;

в) правильная треугольная пирамида;

    Сколько и каких элементов симметрии имеют правильные многогранники:

а) правильный тетраэдр;

б) правильный гексаэдр;

в) правильный октаэдр;

г) правильный икосаэдр;

д) правильный додекаэдр?

МКОУ «Аннинская СОШ с УИОП»

Симметрия в пространстве


Симметрия

Симметрия в широком смысле - соответствие, неизменность, проявляемые при каких-либо изменениях, преобразованиях.


Центральная симметрия

Параллельный перенос

Осевая симметрия

Симметрия


Зеркальное отражение или зеркальная симметрия - движение евклидова пространства, множество неподвижных точек которого является гиперплоскостью (в случае трехмерного пространства - просто плоскостью).



Осевая симметрия

При осевой симметрии каждая точка фигуры переходят в точку, симметричную ей относительно плоскости


Осевая симметрия


Центральная симметрия

Центральной симметрией относительно точки A называют преобразование пространства, переводящее точку X в такую точку X′, что A - середина отрезка XX′.


Центральная симметрия


Центральная симметрия

Её можно представить как композицию отражения относительно плоскости, проходящей через центр симметрии, с поворотом на 180° относительно прямой, проходящей через центр симметрии и перпендикулярной вышеупомянутой плоскости отражения.


Параллельный перенос

Параллельный перенос ― частный случай движения, при котором все точки пространства перемещаются в одном и том же направлении на одно и то же расстояние.


Параллельный перенос


Симметрия в физике

В теоретической физике, поведение физической системы описывается некоторыми уравнениями. Если эти уравнения обладают какими-либо симметриями, то часто удаётся упростить их решение путём нахождения сохраняющихся величин (интегралов движения ).


Симметрия в биологии

Симметрия в биологии - это закономерное расположение подобных частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии.


Симметрия в химии

Симметрия важна для химии, так как она объясняет наблюдения в спектроскопии, квантовой химии и кристаллографии.


Симметрия в религиозных символах

Предполагается, что тенденция людей видеть цель в симметрии, является одной из причин, почему симметрия часто является неотъемлемой частью символов мировых религий. Вот лишь некоторые из многих примеров, изображённые на рисунке.


Симметрия в социальных взаимодействиях

Люди наблюдают симметричную природу (также включающую асимметричный баланс) социального взаимодействия в различных контекстах. Они включают оценки взаимности, эмпатии, извинения, диалога, уважения, справедливости и мести. Симметричные взаимодействия посылают сигналы «мы одинаковые», а асимметричные взаимодействия выражают мысль «я особый, лучше, чем ты».