Манна уитни. U критерий Манна-Уитни

Материал из Википедии - свободной энциклопедии

U-критерий Манна - Уитни (англ. Mann - Whitney U-test ) - статистический критерий , используемый для оценки различий между двумя независимыми выборками по уровню какого-либо признака, измеренного количественно. Позволяет выявлять различия в значении параметра между малыми выборками.

Другие названия: критерий Манна - Уитни - Уилкоксона (англ. Mann - Whitney - Wilcoxon, MWW ), критерий суммы рангов Уилкоксона (англ. Wilcoxon rank-sum test ) или критерий Уилкоксона - Манна - Уитни (англ. Wilcoxon - Mann - Whitney test ). Реже: критерий числа инверсий .

История

Данный метод выявления различий между выборками был предложен в 1945 году Фрэнком Уилкоксоном (F. Wilcoxon ). В 1947 году он был существенно переработан и расширен Х. Б. Манном (H. B. Mann ) и Д. Р. Уитни (D. R. Whitney ), по именам которых сегодня обычно и называется.

Описание критерия

Простой непараметрический критерий. Мощность критерия выше, чем у Q-критерия Розенбаума .

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами (ранжированным рядом значений параметра в первой выборке и таким же во второй выборке). Чем меньше значение критерия, тем вероятнее, что различия между значениями параметра в выборках достоверны.

Ограничения применимости критерия

  1. В каждой из выборок должно быть не менее 3 значений признака. Допускается, чтобы в одной выборке было два значения, но во второй тогда не менее пяти.
  2. В выборочных данных не должно быть совпадающих значений (все числа - разные) или таких совпадений должно быть очень мало.

Использование критерия

Для применения U-критерия Манна - Уитни нужно произвести следующие операции.

  1. Составить единый ранжированный ряд из обеих сопоставляемых выборок, расставив их элементы по степени нарастания признака и приписав меньшему значению меньший ранг. Общее количество рангов получится равным: N=n_1+n_2, где n_1 - количество элементов в первой выборке, а n_2 - количество элементов во второй выборке.
  2. Разделить единый ранжированный ряд на два, состоящие соответственно из единиц первой и второй выборок. Подсчитать отдельно сумму рангов, пришедшихся на долю элементов первой выборки, и отдельно - на долю элементов второй выборки. Определить большую из двух ранговых сумм (T_x), соответствующую выборке с n_x элементами.
  3. Определить значение U-критерия Манна - Уитни по формуле: U=n_1\cdot n_2+\frac{n_x\cdot(n_x+1)}{2}-T_x.
  4. По таблице для избранного уровня статистической значимости определить критическое значение критерия для данных n_1 и n_2. Если полученное значение U меньше табличного или равно ему, то признается наличие существенного различия между уровнем признака в рассматриваемых выборках (принимается альтернативная гипотеза). Если же полученное значение U больше табличного, принимается нулевая гипотеза . Достоверность различий тем выше, чем меньше значение U.
  5. При справедливости нулевой гипотезы критерий имеет математическое ожидание M(U)=\frac{n_1\cdot n_2}{2} и дисперсию D(U)=\frac{n_1\cdot n_2\cdot (n_1+n_2+1)}{12} и при достаточно большом объёме выборочных данных (n_1>19,\;n_2>19) распределён практически нормально.

Таблица критических значений

См. также

  • Критерий Краскела - Уоллиса - многомерное обобщение U-критерия Манна - Уитни.

Напишите отзыв о статье "U-критерий Манна - Уитни"

Примечания

Литература

  • Mann H. B., Whitney D. R. On a test of whether one of two random variables is stochastically larger than the other. // Annals of Mathematical Statistics. - 1947. - № 18. - P. 50-60.
  • Wilcoxon F. Individual Comparisons by Ranking Methods. // Biometrics Bulletin 1. - 1945. - P. 80-83.
  • Гублер Е. В., Генкин А. А. Применение непараметрических критериев статистики в медико-биологических исследованиях. - Л., 1973.
  • Сидоренко Е. В. Методы математической обработки в психологии. - С-Пб., 2002.

Отрывок, характеризующий U-критерий Манна - Уитни

Он забылся на одну минуту, но в этот короткий промежуток забвения он видел во сне бесчисленное количество предметов: он видел свою мать и ее большую белую руку, видел худенькие плечи Сони, глаза и смех Наташи, и Денисова с его голосом и усами, и Телянина, и всю свою историю с Теляниным и Богданычем. Вся эта история была одно и то же, что этот солдат с резким голосом, и эта то вся история и этот то солдат так мучительно, неотступно держали, давили и все в одну сторону тянули его руку. Он пытался устраняться от них, но они не отпускали ни на волос, ни на секунду его плечо. Оно бы не болело, оно было бы здорово, ежели б они не тянули его; но нельзя было избавиться от них.
Он открыл глаза и поглядел вверх. Черный полог ночи на аршин висел над светом углей. В этом свете летали порошинки падавшего снега. Тушин не возвращался, лекарь не приходил. Он был один, только какой то солдатик сидел теперь голый по другую сторону огня и грел свое худое желтое тело.
«Никому не нужен я! – думал Ростов. – Некому ни помочь, ни пожалеть. А был же и я когда то дома, сильный, веселый, любимый». – Он вздохнул и со вздохом невольно застонал.
– Ай болит что? – спросил солдатик, встряхивая свою рубаху над огнем, и, не дожидаясь ответа, крякнув, прибавил: – Мало ли за день народу попортили – страсть!
Ростов не слушал солдата. Он смотрел на порхавшие над огнем снежинки и вспоминал русскую зиму с теплым, светлым домом, пушистою шубой, быстрыми санями, здоровым телом и со всею любовью и заботою семьи. «И зачем я пошел сюда!» думал он.
На другой день французы не возобновляли нападения, и остаток Багратионова отряда присоединился к армии Кутузова.

Князь Василий не обдумывал своих планов. Он еще менее думал сделать людям зло для того, чтобы приобрести выгоду. Он был только светский человек, успевший в свете и сделавший привычку из этого успеха. У него постоянно, смотря по обстоятельствам, по сближениям с людьми, составлялись различные планы и соображения, в которых он сам не отдавал себе хорошенько отчета, но которые составляли весь интерес его жизни. Не один и не два таких плана и соображения бывало у него в ходу, а десятки, из которых одни только начинали представляться ему, другие достигались, третьи уничтожались. Он не говорил себе, например: «Этот человек теперь в силе, я должен приобрести его доверие и дружбу и через него устроить себе выдачу единовременного пособия», или он не говорил себе: «Вот Пьер богат, я должен заманить его жениться на дочери и занять нужные мне 40 тысяч»; но человек в силе встречался ему, и в ту же минуту инстинкт подсказывал ему, что этот человек может быть полезен, и князь Василий сближался с ним и при первой возможности, без приготовления, по инстинкту, льстил, делался фамильярен, говорил о том, о чем нужно было.
Пьер был у него под рукою в Москве, и князь Василий устроил для него назначение в камер юнкеры, что тогда равнялось чину статского советника, и настоял на том, чтобы молодой человек с ним вместе ехал в Петербург и остановился в его доме. Как будто рассеянно и вместе с тем с несомненной уверенностью, что так должно быть, князь Василий делал всё, что было нужно для того, чтобы женить Пьера на своей дочери. Ежели бы князь Василий обдумывал вперед свои планы, он не мог бы иметь такой естественности в обращении и такой простоты и фамильярности в сношении со всеми людьми, выше и ниже себя поставленными. Что то влекло его постоянно к людям сильнее или богаче его, и он одарен был редким искусством ловить именно ту минуту, когда надо и можно было пользоваться людьми.
Пьер, сделавшись неожиданно богачом и графом Безухим, после недавнего одиночества и беззаботности, почувствовал себя до такой степени окруженным, занятым, что ему только в постели удавалось остаться одному с самим собою. Ему нужно было подписывать бумаги, ведаться с присутственными местами, о значении которых он не имел ясного понятия, спрашивать о чем то главного управляющего, ехать в подмосковное имение и принимать множество лиц, которые прежде не хотели и знать о его существовании, а теперь были бы обижены и огорчены, ежели бы он не захотел их видеть. Все эти разнообразные лица – деловые, родственники, знакомые – все были одинаково хорошо, ласково расположены к молодому наследнику; все они, очевидно и несомненно, были убеждены в высоких достоинствах Пьера. Беспрестанно он слышал слова: «С вашей необыкновенной добротой» или «при вашем прекрасном сердце», или «вы сами так чисты, граф…» или «ежели бы он был так умен, как вы» и т. п., так что он искренно начинал верить своей необыкновенной доброте и своему необыкновенному уму, тем более, что и всегда, в глубине души, ему казалось, что он действительно очень добр и очень умен. Даже люди, прежде бывшие злыми и очевидно враждебными, делались с ним нежными и любящими. Столь сердитая старшая из княжен, с длинной талией, с приглаженными, как у куклы, волосами, после похорон пришла в комнату Пьера. Опуская глаза и беспрестанно вспыхивая, она сказала ему, что очень жалеет о бывших между ними недоразумениях и что теперь не чувствует себя вправе ничего просить, разве только позволения, после постигшего ее удара, остаться на несколько недель в доме, который она так любила и где столько принесла жертв. Она не могла удержаться и заплакала при этих словах. Растроганный тем, что эта статуеобразная княжна могла так измениться, Пьер взял ее за руку и просил извинения, сам не зная, за что. С этого дня княжна начала вязать полосатый шарф для Пьера и совершенно изменилась к нему.

Критерий Манна-Уитни U-критерий Манна-Уитни используется для оценки различий между двумя малыми выборками (n 1 ,n 2 ≥3 или n 1 =2, n 2 ≥5) по уровню количественно измеряемого признака. При этом первой выборкой принято считать ту, где значение признака больше. Нулевая гипотеза H 0 ={уровень признака во второй выборке не ниже уровня признака в первой выборке}; альтернативная гипотеза – H 1 ={уровень признака во второй выборке ниже уровня признака в первой выборке}. Рассмотрим алгоритм применения U-критерия Манна-Уитни: 1. Перенести все данные испытуемых на индивидуальные карточки, пометив карточки 1-й выборки одним цветом, а 2-й – другим. 2. Разложить все карточки в единый ряд по степени возрастания признака и проранжировать в таком порядке. 3. Вновь разложить карточки по цвету на две группы. 4. Подсчитать сумму рангов отдельно по группам и проверить, совпадает ли общая сумма рангов с расчетной. 5. Определить большую из двух ранговых сумм . 6. Вычислить эмпирическое значение U : , где - количество испытуемых в - выборке (i = 1, 2), - количество испытуемых в группе с большей суммой рангов. 7. Задать уровень значимости α и, используя специальную таблицу, определить критическое значение U кр (α) . Если , то H 0 на выбранном уровне значимости принимается. Рассмотрим использование U критерия Манна-Уитни на примере. Проведение срезовой контрольной работы по математике (алгебра и геометрия) в средней общеобразовательной школе дало следующие результаты по 10-балльной шкале для класса, обучающегося по программе «Развивающего обучения» (7 «Б»), и класса, обучающегося по традиционной системе (7 «А»):

Определите, превосходят ли учащиеся 7 «Б» учащихся 7 «А» по уровню знаний по математике.

Сравнение результатов показывает, что баллы, полученный за контрольную работу, в 7 «Б» классе несколько выше, поэтому первой считаем выборку результатов 7 «Б» класса. Таким образом, нам требуется определить, можно ли считать имеющуюся разницу между баллами существенной. Если можно, то это будет означать, что класс, обучающийся по системе «развивающего обучения» имеет более качественные знания по математике. В противном случае, на выбранном уровне значимости различие окажется несущественным.

Для оценки различий между двумя малыми выборками (в данном примере их объёмы равны: n 1 =12, n 2 =11) используем критерий Манна-Уитни. Проранжируем представленную таблицу:

7 «Б» (баллы) ранг 7 «А» (баллы) ранг
22,5
22,5 20.5
20.5 16.5
16.5 16.5
16.5 11.5
16.5 11.5
16.5 7.5
11.5 7.5
11.5 7.5
7.5 4.5
4.5
Сумма: 168.5 Сумма: 107.5

При ранжировании объединяем две выборки в одну. Ранги присваиваются в порядке возрастания значения измеряемой величины, т.е. наименьшему рангу соответствует наименьший балл. Заметим, что в случае совпадения баллов для нескольких учеников ранг такого балла следует считать, как среднее арифметическое тех позиций, которые занимают данные баллы при их расположении в порядке возрастания. Например, 4 балла получили 3 ученика (см. таблицу). Значит, первые 3 позиции в расположении займёт балл, равный 4. Поэтому ранг для 4 баллов – это среднее арифметическое для позиций 1, 2 и 3, или: . Аналогично рассуждаем при вычислении ранга для балла, равного 5. Такой балл получили двое учащихся. Значит, при распределении по возрастанию первые три позиции занимает балл, равный 4, а четвёртую и пятую позиции займёт балл, равный 5. Поэтому его ранг будет равен среднему арифметическому между числами 4 и 5, т.е. 4.5.

Используя предложенный принцип ранжирования, получим таблицу рангов. Заметим, что выбор среднего арифметического в качестве ранга применяется при любом ранжировании, в том числе необходимого и для вычисления других критериев достоверности или же коэффициента корреляции Спирмена.

Чтобы использовать критерий Манна-Уитни, рассчитаем суммы рангов рассматриваемых выборок (см. таблицу). Сумма для первой выборки равна 168,5, для второй – 107,5. Обозначим наибольшую из этих сумм через T x (T x =168.5). Среди объёмов n 1 и n 2 выборок наибольший обозначим n x . Этих данных достаточно, чтобы воспользоваться формулой расчёта эмпирического значения критерия:

T x =168,5, n x =12>11=n 2 . Тогда:

Критическое значение критерия находим по специальной таблице. Пусть уровень значимости равен 0.05.

Гипотеза H 0 о незначительности различий между баллами двух классов принимается, если u кр

Следовательно, различия в уровне знаний по математике среди учащихся можно считать несущественными.

Схема использования критерия Манна-Уитни выглядит следующим образом

где
,

7. Определить критическое значение -критерия (см. прил., табл. А3).

8. Сравнить расчетное и критическое значение -критерия. Если расчетное значе­ние больше или равно критическому, то гипотеза
равенства средних значений в двух выборках изменений отвергается. Во всех других случаях она прини­мается на заданном уровне значимости.

Лекция 4. Критерии для непараметрических распределений

4.1. -Критерий Манна-Уитни

Назначение критерия. Критерий предназначен для оценки различии между двумя непараметрическими вы­борками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда

Описание критерия

Этот метод определяет, достаточно ли мала зона пересекающихся значений между двумя рядами. Чем меньше эта область, тем более вероятно, что различия достоверны. Эмпирическое значение критерия и отражает то, насколько велика зона совпадения между рядами. Поэтому, чем меньше
тем более вероятно, что различия достоверны.

Гипотезы

Уровень признака в группе 2 не ниже уровня признака в группе 1.

Уровень признака в группе 2 ниже уровня признака в группе 1.

Алгоритм расчета критерия Манна-Уитни

1. Перенести все данные испытуемых на индивидуальные карточки.

2. Пометить карточки испытуемых выборки 1 одним цветом, скажем, красным, а все карточки из выборки 2 – другим, например синим.

3. Разложить все карточки в единый ряд по степеням нарастания признака, не считаясь с тем, к какой выборке они относятся, как если бы была одна большая выборка.

4. Проранжировать значения на карточках, приписывая меньшему значению меньший ранг.

5. Вновь разложить карточки на две группы, ориентируясь на цветные обозначения: красные карточки в один ряд, синие – в другой.

7. Определить большую из двух ранговых сумм.

8. Определить по формуле значение

,

где
количество испытуемых в выборке 1;
количество испытуемых в выборке 2;
большая из двух ранговых сумм;
количество испытуемых в группе с большей суммой рангов.

9. Определить критические значения . Если
то

гипотеза
принимается. Если
то отвергается. Чем меньше

значения , тем достоверность различий выше.

Пример. Сравнить эффективность двух методов обучения в двух группах. Результаты испытаний представлены в таблице 4.

Таблица 4

Перенесем все данные в другую таблицу, выделив данные второй группы, подчеркиваем и делаем ранжирование общей выборки (см. алгоритм ранжирования в методических указаниях к заданию).

Значения

Найдем сумму рангов двух выборок и выберем большую из них:

Рассчитаем эмпирическое значение критерия по формуле (3)

Определим критическое значение критерия при уровне значи­мости
(см. прил. табл. А1)

Вывод: так как расчетное значение критерия больше критического при уровне зна­чимости
и
, гипотеза о равенстве средних принимается, различия в методиках обучения будут несущественны.

В этой статье Вы узнаете, почему кроме t-теста существуют другие методы сравнения двух выборок. Начнем мы с того, что вспомним о нормальности данных и связанной с ней делением статистических тестов на две категории: параметрические и непараметрические. О последних мы поговорим более подробно: разберем три наиболее популярных теста, а также научимся их запускать в среде R.

Параметрический или непараметрический критерий различия?

Статистические методы, использующие параметры нормального распределения данных (среднее, стандартное отклонение и прочее) называются параметрическими . Так например, рассмотренный в предыдущей статье является типичным параметрическим методом. Почему? Потому, что главным условием для его проведения является нормальное распределение количественных данных. Непараметрические методы, напротив, не зависят от распределения данных и позволяют работать как с количественными, так и с порядковыми данными (например: размер обуви, шкала силы землетрясений).

При нормальном распределении данных параметрические критерии имеют большую мощность по сравнению с непараметрическими. Однако, когда данные выборок не проходят тесты нормальности (такие, как qqplot и Шапиро тест), непараметрические методы дают более точные предсказания. Особенно они эффективны с выборками небольшого размера (<100 наблюдений), на распределение которых могут влиять неизвестные факторы. Сегодня мы познакомимся с непараметрическими аналогами t-теста, использующимися также, для сравнения двух выборок. При выборе критерия следует обратить внимание на две вещи: зависимость данных выборок друг от друга и объем выборок.

На приведенном выше рисунке Вы видите упрощенную классификацию методов сравнения средних (или медиан) двух выборок. Мы кратко поговорим о каждом из непараметрических критериев, и научимся применять их в среде R. Чтож, приступим!

Критерий Уилкоксона

Начнем знакомство с непараметрических тестов для зависимых выборок. Прежде всего стоит отметить, что выборки называются зависимыми, когда испытуемые одной и той же группы были протестированы в разные моменты времени с меняющимися (1) или неменяющимися (2) условиями эксперимента. В первом случае проверяется эффект какого либо действия в сравнении с контрольным измерением ("до и после"), во втором - повторяемость результатов эксперимента ("контроль-повтор").

Тест Уилкоксона (от английского "Wilcoxon signed-rank test") является широко используемым и эффективным методом выявления различий между медианами двух зависимых выборок с распределением данных отличным от нормального. Он идеально подходит для сравнения маленьких выборок, где количество испытуемых/исследований больше 5, но меньше 50. Как и для всех критериев, рассмотренных в этой статье, данные могут быть как количественными, так и порядковыми. Метод был разработан в 1945 году американским статистиком и химиком Фрэнком Уилкоксоном (фото справа).

Чтобы запустить тест Уилкоксона в среде R следует загрузить данные выборок и ввести следующую команду:

wilcox.test("выборка_1", "выборка_2" , paired = T)

Как и в t-тесте, в непараметрических статистических тестах внутри скобок можно добавить дополнительные параметры, такие как alternative , conf.int , conf.level . Чтобы посмотреть все аргументы функции, поставьте перед ней знак вопроса, в нашем случае: ?wilcox.test

G-критерий знаков

Если же количество исследований в выборке больше 50, то следует использовать G-критерий знаков. Критерий знаков по статистической мощности уступает Уилкоксону, но превосходит большинство других непараметрических аналогов. Данные выборок должны быть зависимыми, количество исследований в выборке от 5, но не более 300 (про механизм расчетов и ограничения метода можно почитать ).

Провести тест в R не сложно, но потребуется сделать несколько манипуляций с данными. Сначала мы загрузим данные двух зависимых выборок, например систолическое (верхнее) давление до и после применения лекарства у 60 пациентов-гипертоников. Загрузим данные "before" и "after" в среду R. Затем визуализируем их.

before <- c(171.2, 169.8, 154.6, 130.9, 158.5, 145.5, 143.5, 144.7, 147.7, 160.7, 154.7, 181.8, 167.2, 137.4, 180.2, 138.7, 159.9, 141.8, 172.2, 167.0, 137.2, 170.9, 168.4, 163.7, 160.1, 163.5, 146.7, 173.9, 180.1, 136.0, 159.0, 145.6, 186.5, 177.7, 167.7, 167.4, 165.9, 147.2, 165.2, 133.3, 175.0, 174.7, 163.0, 154.1, 189.4, 166.5, 153.0, 134.3, 177.1, 150.4, 152.4, 176.2, 160.3, 135.3, 131.2, 172.1, 137.0, 156.6, 178.5, 168.1) after <- c(179.5, 141.9, 124.7, 103.2, 143.1, 146.0, 132.2, 104.9, 145.3, 123.5, 135.2, 176.2, 142.7, 114.1, 171.9, 115.0, 126.4, 108.0, 171.7, 148.8, 103.5, 178.5, 138.9, 150.0, 131.8, 169.2, 131.4, 138.8, 146.2, 116.1, 148.8, 109.2, 186.3, 164.1, 147.3, 165.3, 140.0, 122.6, 174.4, 104.6, 156.6, 175.3, 126.8, 122.6, 184.0, 139.6, 149.4, 105.3, 181.9, 134.6, 129.4, 148.0, 170.2, 144.2, 133.3, 171.8, 118.4, 131.2, 150.0, 131.0) boxplot(before, after, col = c(6,5), main = "The effect of treatment", outer = TRUE) axis(1, at=1:2, labels=c("before","after"))

Затем найдем разность между векторами "before" и "after" и назовем новый вектор "difference", после чего при помощи команды length узнаем его длину. Так как нас интересует, снижает ли лекарство давление у пациентов, мы узнаем какое количество элементов в векторе "difference" больше нуля. Это количество принято называть числом "успехов".

difference <- before - after difference length(difference) length(difference)

Теперь все готово для того, чтобы запустить G-критерий знаков в R. Для этого воспользуемся командой binom.test , где в параметрах функции укажем сначала число "успехов", затем число исследований в выборке.

binom.test(50, 60)

Нулевая гипотеза говорит о том, что медианы выборок статистически не отличаются, альтернативная - что статистические различия есть. В нашем случае p-value значительно меньше 0.05, поэтому мы можем с уверенностью отвергнуть нулевую гипотезу и принять альтернативую: две выборки статистически отличаются друг от друга. Также мы видим, что у 83% пациентов давление снизилось. Для демонстрации статистической значимости результатов эксперимента, просто добавьте к графику надпись p-value < 0.001.

Критерий Манна-Уитни

Этот тест также был изначально разработан и опубликован Уилкоксоном в 1945 году. Однако спустя два года его существенно усовершенствовали два математика, в честь которых и был назван критерий. В отличие от двух предыдущих критериев, тест Манна-Уитни используется при сравнении двух независимых выборок , также имеющих отклонения от нормального распределения. Подробнее об алгоритме расчета данного критерия можете почитать в этой статье .

Запустить тест Манна-Уитни в R крайне просто, используем уже известную нам функцию "wilcox.test" и убираем из скобок "paired = T":

wilcox.test("выборка_1", "выборка_2" )

Однако при проведении этого метода необходимо соблюдать два условия. Во-первых, одинаковые значения в выборке должны быть сведены к минимуму (все числа должны быть разными). Во-вторых, в каждой выборке должно быть не менее трех исследований (минимум 3 и 3, также допускается 5 и 2).

Заключение

Непараметрических методов существует великое множество, сегодня мы познакомились лишь с тремя наиболее используемыми критериями для сравнения двух выборок. В среде R эти тесты запустить довольно просто, поэтому главный акцент в выборе метода следует делать на его пригодность к решению конкретно Вашей задачи.

Назначение критерия

U - критерий Манна-Уитни предназначен для оценки различий между двумя выборками по уровню какого-либо признака, измеренного начиная со шкалы порядка (не ниже). Он позволяет выявлять различия между малыми выборками, когда n 1 , n 2 3 или n 1 = 2, n 2 5, и является более мощным, чем критерий Розенбаума.

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами упорядоченных значений. При этом 1-м рядом (выборкой группой) называется тот ряд значений, в котором значения, по предварительной оценке, выше, а 2-м рядом - тот, где они предположительно ниже.

Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок.

Расчетное (эмпирическое) значение критерия U отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше U эмп. , тем более вероятно, что различия достоверны.

Ограничения критерия

    Признак должен быть измерен по ординальной, интервальной или пропорциональной шкале.

    Выборки должны быть независимыми.

    В каждой выборке должно быть не менее 3 наблюдений: n 1 , n 2 3 ; допускается, чтобы в одной выборке было 2 наблюдения, но тогда во второй их должно быть не менее 5.

    В каждой выборке должно быть не более 60 наблюдений: n 1 , n 2 60. Однако уже приn 1 , n 2 20 ранжирование становится достаточно трудоемким.

Алгоритм подсчета критерия Манна-Уитни.

    Для расчета критерия необходимо мысленно все значения 1-й выборки и 2-й выборки объединить в одну общую объединенную выборку и упорядочить их.

Все расчеты удобно производить в таблице (таблица 28), состоящей из 4-х столбцов. В эту таблицу заносятся упорядоченные значения объединенной выборки.

При этом:

    значения объединенной выборки упорядочиваются по нарастанию значений;

    значения каждой из выборок записываются в свой столбик: значения 1-й выборки записываются в столбик № 2, значения 2-й выборки записываются в столбик № 3;

    каждое значение записывается на отдельной строчке;

    общее число строк в этой таблице равно N=n 1 +n 2 , гдеn 1 - число испытуемых в 1-й выборке,n 2 - число испытуемых во 2-й выборке

Таблица 28

R 1

R 2

    Значения объединенной выборки ранжируются согласно правилам ранжирования, причем в столбике № 1 записываются ранги R 1 соответствующие значениям 1-й выборки, в столбике № 4 - ранги R 2 , соответствующие значениям 2-й выборки,

    Подсчитывается сумма рангов отдельно по столбику № 1 (для выборки 1) и отдельно по столбику № 4 (для выборки 2). Обязательно проверить, совпадает ли общая сумма рангов с расчетной суммой рангов для объединенной выборки.

    Определить бόльшую из двух ранговых сумм. Обозначим ее как Т х.

    Определить расчетное значение критерия U по формуле:

где n 1 - количество испытуемых в выборке 1,

n 2 - количество испытуемых в выборке 2,

T x - бόльшая из двух ранговых сумм,

n x - количество испытуемых в выборке с бόльшей суммой рангов.

    Правило вывода: Определить критические значения U по таблице критических значений для критерия Манна-Уитни.

Если U эмп. U кр. 0,05 , различия между выборками статистически незначимы.

Если U эмп. U кр. 0,05 , различия между выборками статистически достоверны.

Чем меньше значения U, тем достоверность различий выше.

Контрольные вопросы:

    Назовите условия применения критерия Стьюдента.

    Какие параметры распределений признаков необходимо знать для того, чтобы рассчитать критерий Стьюдента?

    Сформулируйте правило принятия решения по результатам расчетов критерия Стьюдента.

    Почему при расчете критерия Стьюдента необходимо параллельно оценивать и изменчивость признаков в выборках?

    Каким образом можно сравнить две дисперсии?

    В каких случаях в правило вывода критерия Стьюдента необходимо вводить поправку Снедекора?

    Назовите условия применения критерия Розенбуама.

    Сформулируйте правило принятия решения по результатам расчетов критерия Розенбаума.

    Перечислите условия применения критерия Манна-Уитни.

    Что такое общая объединенная выборка при расчете критерия Манна-Уитни.

    Сформулируйте правило принятия решения по результатам расчетов критерия Манна-Уитни.

Самостоятельное практическое задание:

Самостоятельно изучите по учебникам критерии Крускала-Уоллиса и тенденций Джонкира. Составьте конспект по схеме аналогичной той, которая использовалась в лекциях.

Материалы для изучения темы:

а) основная литература:

    Ермолаев О. Ю. Математическая статистика для психологов [Текст]: учебник / О. Ю. Ермолаев. - 5-е изд. - М.: МПСИ: Флинта, 2011. - 336 с. - С. 101-124; 169-172.

    Наследов А.Д. Математические методы психологического исследования: Анализ и интерпретация данных [Текст]: учебное пособие / А. Д. Наследов. - 3-е изд., стереотип. - СПб.: Речь, 2007. - 392 с. - С. 162-167; 173-176; 181-182.

    Сидоренко Е. В. Методы математической обработки в психологии [Текст] / Е. В. Сидоренко. - СПб.: Речь, 2010. - 350 с.: ил. - С. 39-72.

б) дополнительная литература:

    Гласс Дж. Статистические методы в педагогике и психологии [Текст]. / Дж. Гласс, Дж. Стенли- М., 1976. – 494 с. - С. 265-280.

    Кутейников А.Н. Математические методы в психологии [Текст]: учебно-методический комплекс / А. Н. Кутейников. - СПб.: Речь, 2008. - 172 с.: табл. - С. 81-93.

    Суходольский Г.В. Основы математической статистики для психологов [Текст]: учебник / Г. В. Суходольский. - СПб.: Изд-во СПбГУ, 1998. - 464 с. - С. 305-323.