Как отогреть землю для земляных работ. Способы прогрева мерзлого грунта и их особенности

Страница 10 из 18

Разработка грунта, связанная с рытьем траншеи в зимних условиях, осложняется необходимостью предварительной подготовки и отогрева мороженого грунта. Глубина сезонного промерзания грунта определяется по данным метеорологических станций.
В городских условиях, при наличии большого количества действующих кабельных линий и других подземных коммуникаций применение ударных инструментов (отбойных молотков, ломов, клиньев и др.) невозможно из-за опасности механического повреждения действующих кабельных линий и других подземных коммуникаций.
Поэтому мерзлый грунт до начала работ по рытью траншеи в зоне действующих кабельных линий должен быть предварительно отогрет с тем, чтобы земляные работы вести лопатами без применения ударного инструмента.
Отогрев грунта может производиться электрическими рефлекторными печами, электрическими горизонтальными и вертикальными стальными электродами, электрическими трехфазными нагревателями, газовыми горелками, паровыми и водяными иглами, горячим песком, кострами и т. д. Способы отогрева грунта, при которых нагревательные иглы вводятся в мерзлый грунт путем бурения скважин либо их забивки, не получили применения, так как этот способ эффективен и применение его может быть оправдано экономически при глубине разрытия более 0,8 м, т. е. на глубине, которая для кабельных работ не используется. Отогрев грунта может также вестись токами высокой частоты, однако и этот способ пока не получил практического применения ввиду сложности оборудования и низкого коэффициента полезного действия установки. Независимо от принятого способа отогреваемая поверхность предварительно очищается от снега, льда и верхних покровов основания (асфальт, бетон).

Отогрев грунта электрическими токами промышленной частоты при помощи стальных электродов, уложенных горизонтально на мороженый грунт, заключается в создании цепи электрического тока, где отмораживаемый грунт используется как сопротивление.
Горизонтальные электроды из полосовой, угловой и любых других профилей стали длиной 2,5-3 м укладывают горизонтально на мерзлый грунт. Расстояние между рядами электродов, включаемых в разноименные фазы, должно быть 400 - 500 мм при напряжении 220 В и 700-800 мм при напряжении 380 В. Ввиду того что мерзлый грунт плохо проводит электрический ток, поверхность грунта засыпается слоем опилок, смоченных в водном растворе соли толщиной 150-200 мм. В начальный период включения электродов основное тепло передается в грунт от опилок, в которых под влиянием электрического тока возникает интенсивный разогрев. По мере разогрева грунта, повышения его проводимости и проходящего через грунт электрического тока интенсивность разогрева грунта повышается.
С целью уменьшения потерь тепла от рассеивания слой опилок уплотняют и накрывают деревянными щитами, матами, толем и пр.
Расход электрической энергии для отогрева грунта с помощью стальных электродов в большой степени определяется влажностью грунта и составляет от 42 до 60 кВт-ч на 1 м 3 мороженого грунта при длительности отогрева от 24 до 30 ч.
Работы по размораживанию грунта электрическим током должны производиться под надзором квалифицированного персонала, ответственного за соблюдение режима отогрева, обеспечения безопасности работ и исправности оборудования. Указанные требования и сложности их выполнения, естественно, ограничивают возможности применения этого способа. Лучшим и более безопасным методом является применение напряжения до 12 В.

Рис. 15. Конструкция трехфазных нагревателей для отогрева грунта

а - нагреватель; б - схема включения; 1 - стержень стальной диаметром 19 мм, 2 -труба стальная диаметром 25 мм, 3 -втулка стальная диаметром 19-25 мм, 4 - контакты медные сечением 200 мм 2 , 5 - полоска стальная 30X6 мм 2 .

Электрические трехфазные нагреватели позволяют произвести отогрев грунта при напряжении 10 В. Элемент нагревателя состоит из трех стальных стержней, каждый стержень вставлен в две стальные трубы, общая длина которых на 30 мм меньше длины стержня; концы стержня сварены с концами этих труб.
Пространство между стержнем и внутренней поверхностью каждой трубы засыпано кварцевым песком и для герметизации залито жидким стеклом (рис. 15)- Концы трех труб, расположенных в плоскости А-Л, соединены между собой приваренной к ним полоской стали, образуя нейтральную точку звезды нагревателя. Три конца труб, расположенных в плоскости Б-Б, при помощи закрепленных на них медных зажимов присоединяются через специальный понизительный трансформатор мощностью 15 кВ-А к электрической сети. Нагреватель укладывается непосредственно на грунт и засыпается талым песком толщиной 200 мм. Для уменьшения потерь тепла отогреваемый участок дополнительно укрывают сверху матами из стекловолокна.
Расход электрической энергии для отогрева 1 м 3 грунта при этом методе составляет 50-55 кВт-ч, а время отогрева 24 ч.

Электрическая рефлекторная печь. Как показал опыт ведения ремонтных работ в условиях городских сетей, наиболее удобным, транспортабельным и быстрым при одних и тех же условиях, определяемых степенью промерзания, характером отогреваемого грунта и качеством покрытия, является метод отогрева электрическими рефлекторными печами. В качестве нагревателя в печи применяется нихромовая или фехралевая проволока диаметром 3,5 мм, навитая спиралью на изолированную асбестом стальную трубу (рис. 16).
Рефлектор печи изготовляется из согнутого по оси в параболу с расстоянием от отражающего рефлектора до спирали (фокус) 60 мм алюминиевого, дюралюминиевого или стального хромированного листа толщиной 1 мм. Рефлектор отражает тепловую энергию печи, направляя ее на участок отогреваемого мороженого грунта. Для защиты рефлектора от механических повреждений печь закрывается стальным кожухом. Между кожухом и рефлектором имеется воздушный промежуток, что сокращает потери тепла от рассеивания.
Рефлекторная печь присоединяется к электрической сети напряжением 380/220/127 В.
При отогреве грунта собирается комплект из трех однофазных рефлекторных печей, которые соединяют в звезду или треугольник соответственно напряжению сети. Площадь отогрева одной печи составляет 0,4X1,5 м 2 ; мощность комплекта печей 18 кВт.


Рис. 16. Рефлекторная печь для отогрева мороженого грунта.
1 - нагревательный элемент, 2 - рефлектор, 3 - кожух; 4 - контактные зажимы
Расход электроэнергии для отогрева 1 м 3 мороженого грунта составляет примерно 50 кВт-ч при продолжительности отогрева от 6 до 10 ч.
При пользовании печами необходимо также обеспечить безопасные условия производства работ. Место отогрева должно быть ограждено, контактные зажимы для присоединения проводом закрыты, а спирали течи не должны касаться грунта.

Отогрев мороженого грунта огнем. Для этой цели используется как жидкое, так и газообразное топливо. В качестве жидкого топлива применяется солярное масло. Расход его составляет 4-5 кг на 1 м 3 отогретого грунта. Установка состоит из коробов и форсунок. При длине коробов 20-25 м установка за сутки дает возможность отогреть грунт на глубине 0,7-0,8 м.
Процесс подогрева длится 15-16 ч. В течение остального времени суток оттаивание грунта происходит за счет аккумулированного тепла его поверхностным слоем.
Более эффективным и экономическим топливом для отогрева грунта является газообразное.
Газовая горелка, применяемая для этой цели, представляет собой отрезок стальной трубки диаметром 18 мм со сплюснутым конусом. Полусферические короба изготовляют из листовой стали толщиной 1,5-2,5 мм. Для экономии (потерь тепла короба обсыпают теплоизоляционным слоем грунта толщиной до 100 мм. Стоимость отогрева грунта газовым топливом составляет в среднем 0,2-0,3 руб/м 3 .
Отогрев грунта кострами применяется при незначительном объеме работ (рытье котлованов и траншеи для вставки). Костер разводят после расчистки места от снега и льда. Для большей эффективности отогрева костер накрывают листами железа толщиной 1,5-2 мм. После того как грунт отогрет на глубину 200-250 мм, что устанавливается специальным стальным зондом, дают костру догореть, после чего выбирают лопатами оттаявший грунт. Затем на дне образовавшейся впадины вновь разводят костер, повторяя эту операцию до тех пор, пока мороженый грунт не будет выбран на всю глубину. В ходе работ по отогреву грунта необходимо следить за тем, чтобы вода от тающего снега и льда не заливала костер.
В процессе отогрева грунта действующие кабели могут быть повреждены в результате воздействия теплонагревателя. Как показал опыт, для надлежащей защиты действующих кабелей при отогреве грунта необходимо, чтобы между нагревателем и кабелем сохранялся слой земли толщиной не менее 200 мм в течение всего времени отогрева.

Наша страна находится в северных широтах. Зимний период с отрицательными температурами отнимает много времени у строителей. Однако можно и не останавливать капитальное строительство, если предпринять прогрев грунта. Такая процедура становится все более популярной. В данной статье мы расскажем об основных способах прогрева грунта.

Зачем нужен прогрев грунта зимой?

Когда строительство проводится в черте города, вынимать мерзлый грунт с помощью отбойного оборудования становится опасно. Можно легко повредить подземные коммуникации, которых так много в городе: кабельные линии, водопроводы, газопроводы. В таких местах, зачастую, вынимать грунт приходится вручную. Зимой мерзлую землю лопатами не выймешь из траншеи. Поэтому заказывают прогрев грунта непосредственно перед началом строительных работ. Одновременно заказывают и прогрев бетона после заливки фундамента для его гидратации и правильного набора твердости.

Какие бывают способы прогрева грунта?

Прогревать землю на месте стройки можно множеством способов. Они различаются не только затратами, но и эффективностью. Мы перечислим основные из них:
  1. Прогрев горячей водой. Такой метод подходит для разморозки небольших участков земли. По площади укладывают лабиринты гибких рукавов, которые укрывают полиэтиленом или любым теплоизолятором. По рукавам пускают нагретую до 70-90 градусов по Цельсию воду. Для этого используют тепловой генератор или пиролизный котел. Скорость размораживания — не более 60 см за сутки. Недостатки — высокая стоимость оборудования и низкая скорость прогрева.
  2. Прогрев паром и паровыми иглами. На участке пробуривают скважины глубиной от полутора до двух метров для специальных металлических труб диаметром до 50 мм. Эти так называемые иглы имеют на концах отверстия размером не более 3 мм. Трубы расставляют в шахматном порядке через каждые 1-1,5 метра. В иглы подают насыщенный водяной пар (температура — более 100 градусов по Цельсию, давление — 7 атмосфер). Этот метод применяется только для глубоких котлованов — более 1,5 метра. Недостатки — сложные подготовительные работы, выброс больших объемов конденсата и необходимость в постоянном контроле процесса.
  3. Прогрев ТЭНами. Этот метод схож с паровыми иглами применяемым инструментом. Также используются трубы длиной 1 метр и диаметром до 60 мм. Их устанавливают в пробуренные скважины на таком же расстоянии. Внутри труб находится жидкий диэлектрик с высокой теплопроводностью. ТЭНы подключают к электросети. Расход электроэнергии на 1 куб. метр земли — 42 кВт*ч. Недостатки — высокие затраты.
  4. Прогрев электрическими матами. Метод подразумевает использование инфракрасных матов, работающих по принципу подобных матов для “теплого пола”. Электроматы нагревают грунт до температуры в 70 градусов. Глубина прогрева — не более 80 см за 32 часа. Расход электроэнергии — 0,5 кВт*ч на 1 квадратный метр. Недостатки — хрупкий материал, потребность в постоянном контроле.
  5. Прогрев этиленгликолем с помощью установки Waker Neuson. Оборудование работает на дизельном топливе. С этой точки зрения оно является автономным и не зависит от подводки коммуникаций (электричества). По площади участка змейкой раскладывается шланг, по которому будет циркулировать нагретый этиленгликоль. Эта жидкость отличается высочайшей теплопроводностью и большей, чем у воды, температурой кипения. Шланги накрывают матами из теплоизоляции. Одна установка позволяет разморозить 400 квадратных метров на глубину до 1,5 метра за 8 суток.

Наша компания предлагает услуги прогрева грунта и бетона именно с помощью установки Waker Neuson. Такой метод считается наиболее эффективным в пересчете затрат на площадь участка и на время разморозки.

При включений с помощью катодов участка грунта в электрическую цепь через него может быть пропущен нагревающий его ток напряжением 120, 220 и 380 в.

Электропроводность грунта зависит от его влажности (рис.3, а), состояния и температуры влаги, концентрации находятся в грунте растворов солей и кислот (рис. 3, б), строения и температуры грунта (рис. 3, в) и т. п.

Сложность строения грунта происходящих в нем физических явлений и изменений, связанных силовыми процессами, значительно усложняет теоретическую сторонy электропрогрева грунта, которая находится пока еще в стадии проработки.

Рис. 1. Установка горизонтальных (струнных) электродов на мерзлый грунт с засыпкой опилками
1 - мерзлой грунт; 2 - горизонтальные (струйные) электроды диаметром 12-16 мм; 3 - провода, подводящие ток; 4 - опилки, смоченные раствором соли; 5 - верхнее утепление (толь, деревянные щиты, маты и т. п.)

Рис. 2. Установка вертикальных (стержневых) электродов в мерзлый грунт с засыпкой опилками
1 - вертикальные электроды; 2 - провода, подводящие ток; 3 - опилки, смоченные раствором соли, 4-верхнее утепление (толь, деревянные шиты, маты и т. п.)

Оттаивание грунта выполняют при помощи горизонтальных (срунных) и вертикальных (стержневых и глубинных) электродов. При оттаивании горизонтальными электродами (рис. 1) поверхность отогреваемого участка грунта покрывают 15-25-см слоем, смоченных водным раствором соли (хлористого натрия,кальции, медного купороса и др.) имеющих назначение лишь приводить ток и отогреть верхний слой мерзлого грунта, так как последний даже при напряжении 380 в тока практически не пропускает.

При горизонтальных электродах тепло передается первоначально грунту лишь от нагревающегося слоя опилок. Только верхний незначительной толщины слой грунта, прилегающий к электродам, включается в электроцепь и является сопротивлением, в котором выделяется тепло.

Расстояние между рядами электродов, включенными в разные фазы, составляет 40-50 см при напряжении 220 в и 70-80 см при напряжении 380 в. Применение горизонтальных электродов целесообразно при отогревании промерзших оснований и небольшой (до 0,5-0,7 м) глубине промерзания, а также в случаях, когда вертикальные (стержневые) электроды не могут быть применены вследствие малой электропроводности грунта или невозможности забивки их в грунт.

При оттаивании вертикальными стержневыми электродами влажные опилки служат вначале побудителем к прогреву верхнего слоя грунта, который по мере оттаивания включается в электрическую цепь, после чего опилки только уменьшают теплопотери оттаиваемого грунта. Вместо опилок побудителем могут служить растворы солей, заливаемые в бороздки в грунте, пробитые зубилом между всеми электродами на глубину 6 см.

При укрытии поверхности отогреваемого грунта слоем сухих опилок, как показывает практика, устройство таких бороздок дает хорошие результаты.
Применение вертикальных электродов более эффективно при глубине мерзлого грунта более 0,7 м, а также при невозможности обеспечения должного контакта между горизонтальными электродами и грунтом. В твердые (глинистые и песчаные грунты с влажностью более 15-20%) электроды забивают на глубину 20-25 см, и затем погружают глубже по мере оттаивання грунта (примерно через каждые 4-5 час).

Расстояние между электродами назначается от 40 до 70 см в зависимости от напряжения тока, характера и температуры грунта. При оттаивании на глубину 1,5 м рекомендуется иметь два комплекта электродов - короткие и длинные; по оттаивании грунта на глубину коротких электродов они заменяются длинными. Отогрев грунта на глубину 2 м и более следует производить в несколько приемов, послойно с периодическим удалением оттаявших слоев при выключенном токе. В целях экономии электроэнергии и максимального использования мощности следует стремиться, чтобы к концу оттаивания средним температура грунта не превышала +5° и максимальная +20°, и прогрев следует вести участками, периодически выключая ток.

Рис. 3. Изменение удельного сопротивления грунта в зависимости
а - от влажности грунта из красной глины, б - от содержаний NaCi в глинистом грунте при 30% его влажности (по весу), 8 - от температуры грунта при влажности 18,6%

Установка для оттаивания грунта состоит из щитов и софитов (по 4-5 на каждый распределительный щит) для подключения электродов к сети.

При применении глубинных электродов оттаивание мерзлого грунта производят снизу вверх к дневной его поверхности. Для этого электроды из круглой стали диаметром 12-19 мм (в зависимости от их длины и твердости грунта) в шахматном порядке забивают сквозь всю толщу мерзлого слоя на 15-20 см в талый грунт. В начале оттаивания электрический ток, проходящий в талом грунте, нагревает его и оттаивает расположенную непосредственно лад ним часть мерзлого слоя. Таким образом, тепловой поток, постепенно увеличиваясь по толщине снизу вверх, последовательно отогревает мерзлый грунт, причем почти все выделяемое током тепло используется для отаивания мерзлого слоя.
Такой способ оттаивания, помимо уменьшении теплопотерь, дает ряд других выгод.

Как известно, экскаваторы могут разрабатывать без предварительнoгo рыхления мерзлую корку грунта толщиной до 25-40 см, Что позволяет соответственно уменьшить глубину оттаиваемого грунта. Так как верхние слои грунта обычно являются наиболее сложными и энергоемкими, то разработка их в неоттаявшем состоянии снижает расход электроэнергии и ускоряет производство работ.

Применение более высокого напряжения дает возможность увеличивать расстояние между электродами. Последнее при напряжении 220 в принимают в 0,5 м, а при 380 в уже 0,7 м.
Нижний конец электрода заостряют, а в верхнем просверливают сквозное отверстие диаметром 3-4 мм, через которое пропускают Медный голый провод длиной 25-30 см; один конец провода приваривают к электроду, а другой присоединяют к электросети с последующим чередованием фаз.

При затруднительности забивки электродов предварительно проходят скважины диаметром, который на 1-2 мм меньше принятого диаметра электрода.
По опытным данным суглинки с влажностью 18% при глубине промерзания 1,5 м и напряжении тока 220 в оттаивают в течение примерно 16 час.
Отогреваемую площадку выделяют переносным ограждением и умножают предупредительными сигналами с категорическим запрещением входа на нее.
При применении любого способа отогрева грунта необходимо строго соблюдать правила, изложенные в специальной «Инструкции по применению электропрогрева в строительстве».

Оттаивание токами высокой частоты. Мерзлый грунт проницаем для токов высокой частоты, и отогревание его Происходит за счет тепла, выделяемого в грунте при помещении его и переменное электрическое поле высокой частоты.
Генератор высокой частоты состоит из повышающего трансформатора, выпрямителя, генераторных ламп, конденсаторов и колебательного контура. Передвижная установка монтируется в автоприцепе и питается от сети напряжением 220-380 в или от передвижной электрической станции.
Означенный способ возможен при небольшом объеме работ, разработке траншей и особенно при аварийных работах, когда срок их выполнения является решающим фактором.

Зимнее время традиционно считается неблагоприятным периодом для работ в сфере строительства. Однако применение термоэлектроматов поможет вам достичь преимущества перед конкурентами путем перехода на круглогодичный график работ, независимо от погодных условий и наличия ветра вы сможете избежать простоев в работе и отправки ваших работников в вынужденный отпуск. Мы поможем вам стать сильнейшей компанией на рынке !

Гибкие нагревательные маты устанавливаются на площадях, подлежащих размораживанию, прогреву или требующих защиты от промерзания. Установка и демонтаж матов занимает очень мало времени ! Нагревательный элемент термоматов отдает тепло непосредственно в грунт.

Температура нагрева термоэлектромата 70 o C. Блогодаря встроенуму отражающему материалу тепловой поток направлен только в зону обогрева,
для максимальной теплопередачи и для уменьшения теплопотерь. Термомат нагревается и эффективно осуществляет оттаивание грунта на глубину 30 - 40 см в день, в зависимости от состояния грунта.


Термомат функционирует независимо от оператора, вплоть до выполнения задачи.

Применение мата с нашей концепцией обогрева и размораживания поможет вам достичь конкурентного преимущества перед другими игроками на рынке. Вы сможете продолжать
работы пока остальные будут ждать естественного оттаивания промерзлого грунта. Термомат уже вызвал большой интерес в строительной индустрии.

Эффективные и удобные в применении маты с низкими эксплуатационными расходами, задали новый стандарт в прогреве бетона и размораживании промерзшего грунта в условиях холодного климата.

За этим - будущее!

Область применения предназначена для потребителей, нуждающихся в не подверженных промерзанию материалах или грунте, для круглогодичного выполнения работ согласно установленным спецификациям и требованиям к качеству. Помимо размораживания, предотвращения промерзания и повышения морозоустойчивости, термомат также может применяться для прогрева бетона , обогрева трубопровода, цистерн, песчаных масс, каменной кладки и других нестандартных задач обогрева.

Примеры применения оборудования

Размораживание грунта и территорий:

  • Систем водоснабжения и канализации
  • Траншей для кабеля
  • Шахт, цоколей и площадей для устройства полов
  • Крыш и покрытий
  • Устранения льда и снега

При промерзании:

  • Площадей предназначенных для облицовки
  • Песчаных масс, отсадочного песка
  • Насыпных масс
  • Линий трубопроводов
  • Стрелочных переводов
  • Плавучих пристаней

Предварительный обогрев грунта или бетона:

  • Основания до закладки фундамента
  • Опалубок и оснастки для бетонных работ
  • Увеличение степени отвердевания бетона и плит из облегченного бетона

Разработка грунта в зимних условиях.

В строительстве из общего объема земляных работ от 20 до 25% выполняется в зимних условиях, при этом доля грунта, разрабатываемого в мерзлом состоянии, остается постоянной - 10-15% с возрастанием из года в год абсолютного значения этого объема.

В практике строительства возникает необходимость разрабатывать грунты, находящиеся в мерзлом состоянии только в зимний период года, т.е. грунты сезонного промерзания, или в течение всего года, т.е. вечномерзлые грунты.

Разработка вечномерзлых грунтов может производиться теми же способами, что и мерзлых грунтов сезонного промерзания. Однако при возведении земляных сооружений в условиях вечной мерзлоты необходимо учитывать специфические особенности геотермического режима вечномерзлых грунтов и изменение свойств грунтов при его нарушении.

При отрицательных температурах замерзание воды, содержащейся в порах грунта, существенно изменяет строительно-технологические свойства нескальных грунтов. В мерзлых грунтах значительно увеличивается механическая прочность, в связи с чем, разработка их землеройными машинами затрудняется или вообще невозможна без подготовки.

Глубина промерзания зависит от температуры воздуха, длительности воздействия отрицательных температур, рода грунта и др.

Земляные работы зимой осуществляют следующими тремя методами. При первом методе предусматривают предварительную подготовку грунтов с последующей их разработкой обычными методами; при втором - мерзлые грунты нарезают предварительно на блоки; при третьем методе грунты разрабатывают без их предварительной подготовки. Предварительная подготовка грунта для разработки зимой заключается в предохранении его от промерзания, оттаивании мерзлого грунта, предварительном рыхлении мерзлого грунта.

Предохранение грунта от промерзания . Известно, что наличие на дневной по-

верхности термоизоляционного слоя уменьшает как период, так и глубину промерзания. После отвода поверхностных вод можно устроить термоизоляционный слой одним из следующих способов.

Рыхление грунта . При вспахивании и бороновании грунта на участке, предназначенном для разработки зимой, его верхний слои приобретает рыхлую структуру с замкнутыми пустотами, заполненными воздухом, обладающую достаточными термоизоляционными свойствами. Вспашку ведут тракторными плугами или рыхлителями на глубину 20...35 см с последующим боронованием на глубину 15...20 см в одном направлении (или в перекрестных направлениях), что повышает термоизоляционный эффект на 18...30%.. Снеговой покров на утепляемой площади можно искусственно увеличить, сгребая снег бульдозерами, автогрейдерами или путем снегозадержания с помощью щитов. Чаще всего механическое рыхление применяют для утепления значительных по площади участков, Защита поверхности грунта термоизоляционными материалами. Утепляющий слой может быть также выполнен из дешевых местных материалов: древесных листьев, сухого мха, торфа, соломенных матов, шлака, стружек и опилок. Поверхностное утепление грунта применяют в основном для небольших по площади выемок.

Пропитку грунта солевыми растворами ведут следующим образом. На поверхно-

сти песчаного и супесчаного грунта рассыпают заданное количество соли (хлористого кальция 0,5 кг/м2 , хлористого натрия 1 кг/м2 ), после чего грунт вспахивают. В грунтах с низкой фильтрующей способностью (глины, тяжелые суглинки) пробуривают скважины, в которые под давлением нагнетают раствор соли. Из-за высокой трудоемкости и стоимости таких работ они являются, как правило, недостаточно эффективными.

Способы оттаивания мерзлого грунта можно классифицировать как по направлению распространения тепла в грунте, так и по применяемому виду теплоносителя. По первому признаку можно выделить следующие три способа оттаивания грунта.

Оттаивание грунта сверху вниз . Этот способ - наименее эффективный, так как источник тепла в этом случае размещается в зоне холодного воздуха, что вызывает большие потери тепла. В то же время этот способ достаточно легко и просто осуществить, он требует минимальных подготовительных работ, в связи с чем, часто применяется на практике.

Оттаивание грунта снизу вверх требует минимального расхода энергии, так как оно происходит под защитой земляной корки и теплопотери при этом практически исключаются. Главный недостаток этого способа - необходимость выполнения трудоемких подготовительных операций, что ограничивает область его применения.

При оттаивании грунта по радиальному направлению тепло распространяется в грунте радиально от вертикально установленных прогревающих элементов, погруженных в грунт. Этот способ по экономическим показателям занимает промежуточное положение между двумя ранее описанными, а для своего осуществления требует также значительных подготовительных работ.

По виду теплоносителя различают следующие способы оттаивания мерзлых грун-

Огневой способ . Для отрывки зимой небольших траншей применяют установку (рис. 1а), состоящую из ряда металлических коробов в форме разрезанных по продольной оси усеченных конусов, из которых собирают сплошную галерею. Первый из коробов представляет собой камеру сгорания, в которой сжигают твердое или жидкое топливо. Вытяжная труба последнего короба обеспечивает тягу, благодаря которой продукты сгорания проходят вдоль галереи и прогревают расположенный под ней грунт. Для уменьшения теплопотерь галерею обсыпают слоем талого грунта или шлака. Полосу оттаявшего грунта засыпают опилками, а дальнейшее оттаивание вглубь продолжается за счет аккумулированного в грунте тепла.

Рисунок 1. Схемы оттаивания грунта огневым способом и паровыми иглами: а

Огневым способом; б - паровыми иглами; 1 - камера сгорания; 2 - вытяжная труба; 3 - обсыпка талым грунтом: 4 - паропровод; 5 - паровой вентиль; 6 - паровая игла; 7 - пробуренная скважина; 8 - колпак.

Оттаивание в тепляках и отражательными печами. Тепляки - это открытые снизу короба с утепленными стенками и крышей, внутри которых размещают спирали накаливания, водяные или паровые батареи, подвешенные к крышке короба. Отражательные печи имеют сверху криволинейную поверхность, в фокусе которой располагается спираль накаливания или излучатель инфракрасных лучей, при этом энергия расходуется более экономично, а оттаивание грунта происходит более интенсивно. Тепляки и отражательные печи питаются от электросети 220 или 380 В. Расход энергии на 1 м 3 оттаянного грунта (в зависимости от его вида, влажности и температуры) колеблется в пределах 100...300 МДж, при этом внутри тепляка поддерживается температура 50...60°С.

При оттаивании грунта горизонтальными электродами по поверхности грун-

та укладывают электроды из полосовой или круглой стали, концы которых отгибают на 15...20 см для подключения к проводам (рис. 2а). Поверхность отогреваемого участка покрывают слоем опилок толщиной 15...20 см, который смачивают солевым раствором с концентрацией 0,2...0,5% с таким расчетом, чтобы масса раствора была не менее массы

опилок. Вначале смоченные опилки представляют собой токопроводящие элементы, так как замерзающий грунт не является проводником. Под воздействием тепла, генерируемого в слое опилок, оттаивает верхний слой грунта, который превращается в проводник тока от электрода к электроду. После этого под воздействием тепла начинает оттаивать верхний слой грунта, а затем - нижние слои. В дальнейшем опилочный слой защищает отогреваемый участок от потерь тепла в атмосферу, для чего слой опилок покрывают полиэтиленовой пленкой или щитами.

Рисунок 2. Схема оттаивания грунта электропрогревом: а - горизонтальными электродами; б - вертикальными электродами; 1 - трехфазная электрическая сеть; 2 - горизонтальные полосовые электроды; 3

Слой опилок, смоченных соленой водой; 4 - слой толя или рубероида; 5 - стержневой электрод.

Этот способ используют при глубине промерзания грунта до 0,7 м, расход электроэнергии на отогрев 1 м3 грунта колеблется от 150 до 300 МДж, температура в опилках не превышает 80... 90 °С.

Оттаивание грунта вертикальными электродами. Электроды представляют собой стержни из арматурной стали с заостренными нижними концами. При глубине промерзания более 0,7 м их забивают в грунт в шахматном порядке на глубину 20 ...25 см, а по мере оттаивания верхних слоев грунта погружают на большую глубину. При оттаивании сверху вниз необходимо систематически убирать снег и устраивать опилочную засыпку, увлажненную солевым раствором. Режим прогрева при стержневых электродах такой же, как и при полосовых, причем во время отключения электроэнергии электроды следует дополнительно заглублять на 1,3... 1,5 м. После отключения электроэнергии в течение 1 ... 2 сут глубина оттаивания продолжает увеличиваться за счет аккумулированного в грунте тепла под защитой опилочного слоя. Расход энергии при этом способе несколько ниже, чем при способе горизонтальных электродов.

Применяя прогрев снизу вверх, до начала прогрева необходимо бурить скважины в шахматном порядке на глубину, превышающую на 15...20 см толщину мерзлого грунта. Расход энергии при отогреве грунта снизу вверх существенно снижается (50... 150 МДж на 1 м3 ), применять слой опилок не требуется. При заглублении стержневых электродов в подстилающий талый грунтуй одновременном устройстве на дневной поверхности опилочной засыпки, пропитанной солевым раствором, оттаивание происходит сверху вниз и снизу вверх. При этом трудоемкость подготовительных работ значительно выше, чем в первых двух вариантах. Применяют этот способ, только когда необходимо экстренно оттаять грунт.

Оттаивание грунта сверху вниз с помощью паровых или водяных регистров. Реги-

стры укладывают непосредственно на расчищенную от снега поверхность отогреваемого участка и закрывают теплоизоляционным слоем из опилок, песка или талого грунта для уменьшения теплопотерь в пространстве. Регистрами оттаивают грунт при толщине мерзлой корки до 0,8 м. Этот способ целесообразен при наличии источников пара или горячей воды, так как монтаж для этой цели специальной котельной установки обычно оказывается слишком дорогим.

Оттаивание грунта паровыми иглами является одним из эффективных средств, но вызывает излишнее увлажнение грунта и повышенный расход тепла. Паровая игла - это металлическая труба длиной 1,5... 2 м, диаметром 25...50мм. На нижнюю часть трубы насажен наконечник с отверстиями диаметром 2...3 мм. Иглы соединяют с паропроводом

гибкими резиновыми рукавами с кранами (рис. 1б). Иглы заглубляют в скважины, предварительно пробуренные на глубину 0,7 глубины оттаивания. Скважины закрывают защитными колпаками из дерева, обшитого кровельной сталью с отверстием, снабженным сальником для пропуска паровой иглы. Пар подают под давлением 0,06... 0,07 МПа. После установки аккумулирующих колпаков прогреваемую поверхность покрывают слоем термоизолирующего материала (например, опилок). Для экономии пара режим прогрева иглами должен быть прерывистым (например, 1 ч - подача пара, 1 ч - перерыв) с поочередной подачей пара в параллельные группы игл. Иглы располагают в шахматном порядке с расстоянием между их центрами 1 ... 1,5 м. Расход пара на 1 м3 грунта 50... 100 кг. Этот способ требует большего расхода тепла, чем способ глубинных электродов, примерно в 2 раза.

При оттаивании грунта водяными циркуляционными иглами в качестве теплоно-

сителя используют воду, нагретую до 50...60°С и циркулирующую по замкнутой системе «котел - разводящие трубы - водяные иглы - обратные трубы - котел». Такая схема обеспечивает наиболее полное использование тепловой энергии. Иглы устанавливают в пробуренные для них скважины. Водяная игла состоит из двух коаксиальных труб, из которых внутренняя имеет внизу открытый, а наружная - заостренный концы. Горячая вода входит в иглу по внутренней трубе, а через нижнее ее отверстие поступает в наружную трубу, по которой поднимается к выходному патрубку, откуда по соединительной трубе идет к следующей игле. Иглы соединяют последовательно по нескольку штук в группы, которые включают параллельно между разводящими и обратными трубопроводами. Оттаивание грунта иглами, в которых циркулирует горячая вода, происходит значительно медленнее, чем вокруг паровых игл. После беспрерывной работы водяных игл в течение 1,5... 2,5 сут их извлекают из грунта, поверхность его утепляют, после чего в течение 1 ...

1,5 сут происходит расширение талых зон за счет аккумулированного тепла. Иглы располагают в шахматном порядке на расстоянии 0,75... 1,25 м между собой и применяют при глубинах промерзания от 1 метра и более.

Оттаивание грунта ТЭНами (электроиглами). ТЭНы представляют собой сталь-

ные трубы длиной около 1 м диаметром до 50 ... 60 мм, которые вставляют в предварительно пробуренные в шахматном порядке скважины.

Внутри игл монтируют нагревательный элемент, изолированный от корпуса трубы. Пространство между нагревательным элементом и стенками иглы заполняют жидкими или твердыми материалами, которые являются диэлектриками, но в то же время хорошо передают и сохраняют тепло. Интенсивность оттаивания грунта зависит от температуры поверхности электроигл, в связи с чем наиболее экономичной является температура 60...80°С, но расход тепла при этом по сравнению с глубинными электродами выше в 1,6...

1,8 раза.

При оттаивании грунта солевыми растворами на поверхности предварительно пробуривают скважины на глубину, подлежащую оттаиванию. Скважины диаметром 0,3...0,4 м располагают в шахматном порядке с шагом около 1 м. В них наливают подогретый до 80...100°С солевой раствор, которым скважины пополняют в течение 3...5 дней. В песчаных грунтах достаточна скважина глубиной 15...20 см, так как раствор проникает вглубь за счет дисперсности грунта. Оттаявшие таким образом грунты после их разработки вторично не смерзаются.

Способ послойного оттаивания вечномерзлых грунтов наиболее целесообразен в весенний период, когда для этих целей можно использовать теплый воздух окружающей атмосферы, теплые дождевые воды, солнечную радиацию. Верхний оттаивающий слой грунта можно удалять любыми землеройно-транспортными или планировочными машинами, обнажая лежащий под ним мерзлый слой, который в свою очередь оттаивает под действием перечисленных выше факторов. Грунт срезают на границе между мерзлым и талым слоями, где грунт имеет ослабленную структуру, что создает благоприятные условия для работы машин. В районах вечной мерзлоты этот способ - один из самых эконо-

мичных и распространенных для разработки грунта при планировке выемок, траншей и т. п.

Способ послойного вымораживания водоносных грунтов предусматривает разра-

ботку до наступления морозов верхнего слоя грунта, лежащего выше горизонта грунтовых вод. Когда под действием холодного атмосферного воздуха расчетная глубина промерзания достигает 40...50 см, приступают к разработке грунта в выемке в мерзлом состоянии. Разработку ведут отдельными участками, между которыми оставляют перемычки из мерзлого грунта толщиной около 0,5 м на глубину около 50 % толщины промерзшего грунта. Перемычки предназначены для изоляции отдельных участков от соседних в случае прорыва грунтовой воды. Фронт разработки перемещается от одной секции к другой, в то время как на уже разработанных секциях глубина промерзания возрастает, после чего разработку их повторяют. Попеременные вымораживание и разработку участков повторяют до достижения проектного уровня, после чего защитные перемычки снимают. Такой способ позволяет разрабатывать при мерзлом состоянии грунта (без крепления и водоотлива) выемки, значительно превосходящие по своей глубине толщину сезонного промерзания грунта.

Предварительное рыхление мерзлого грунта средствами малой механизации при-

меняют при незначительных объемах работ. При больших объемах работ целесообразно использовать механические и мерзлоторезные машины.

Взрывной способ рыхления грунта наиболее экономичен при больших объемах работ, значительной глубине промерзания, в особенности если энергию взрыва используют не только для рыхления, но и для выброса земляных масс в отвал. Но этот способ можно применять только на участках, расположенных вдали от жилых домов и промышленных зданий. При использовании локализаторов взрывной способ рыхления грунтов можно применять и вблизи зданий.

Рисунок 3. Схемы рыхления и резания мерзлого грунта: а - рыхление клином-молотом; б - рыхление дизель-молотом; в - резка в мерзлом грунте щелей многоковшовым экскаватором, оборудованным режущими цепями - барами; 1 - клин-молот; 2 - экскаватор; 3 - мерзлый слой грунта; 4- направляющая штанга; 5 - дизель-молот; 6 - режущие цепи (бары); 7 - многоковшовый экскаватор; 8 - щели в мерзлом грунте.

Механическое рыхление мерзлых грунтов применяют при отрывке небольших по объему котлованов и траншей. В этих случаях мерзлый грунт на глубину 0,5...0,7 м рыхлят клином-молотом (рис. 3a), подвешенным к стреле экскаватора (драглайна), - так называемое рыхление раскалыванием. При работе с таким молотом стрелу устанавливают под углом не менее 60°, что обеспечивает достаточную высоту падения молота. При использовании молотов свободного падения из-за динамической перегрузки быстро изнашиваются стальной канат, тележка и отдельные узлы машины; кроме того, от удара по грунту колебания его могут вредно действовать на близко расположенные сооружения. Механическими рыхлителями рыхлят грунт при глубине промерзания более 0,4 м. В этом случае грунты рыхлят путем скола или нарезки блоков, причем трудоемкость разрушения грунта сколом в несколько раз меньше, чем при рыхлении грунтов резанием. Число уда-

ров по одному следу зависит от глубины промерзания, группы грунта, массы молота (2250…3000 кг), высоты подъема, определяют его ударником конструкции ДорНИИ.

Дизель-молоты (рис. 3б) могут рыхлить грунт при глубине промерзания до 1,3 м и наравне с клиньями являются навесным оборудованием к экскаватору, тракторупогрузчику и трактору. Рыхлить мерзлый грунт дизель-молотом можно по двум технологическим схемам. По первой схеме дизель-молот рыхлит мерзлый слой, двигаясь зигзагом по точкам, расположенным в шахматном порядке с шагом 0,8 м. При этом сферы дробления от каждой рабочей стоянки сливаются между собой, образуя сплошной разрыхленный слой, подготовленный для последующей разработки. Вторая схема требует предварительной подготовки открытой стенки забоя, разрабатываемого экскаватором, после чего ди- зель-молот устанавливают на расстоянии примерно 1 м от бровки забоя и наносят им удары по одному месту до тех пор, пока не произойдет скол глыбы мерзлого грунта. Затем дизель-молот перемещают вдоль бровки, повторяя эту операцию.

Ударные мерзлоторыхлители (рис. 4б) хорошо работают при низких температурах грунта, когда для него характерны не пластичные, а хрупкие деформации, способствующие его раскалыванию под действием удара.

Рыхление грунта тракторными рыхлителями. К этой группе относится оборудование, у которого непрерывное режущее усилие ножа создается за счет тягового, усилия трактора-тягача. Машины этого типа послойно проходят мерзлый грунт, обеспечивая за каждую проходку глубину рыхления 0,3...0,4 м: Поэтому разрабатывают мерзлый слой, предварительно разрыхленный такими машинами, как бульдозеры. В противоположность ударным рыхлителям статические рыхлители хорошо работают при высоких температурах грунта, когда он имеет значительные пластические деформации, а механическая прочность его понижена. Статические рыхлители могут быть прицепными и навесными (на заднем мосту трактора). Очень часто их используют совместно с бульдозером, который может в этом случае попеременно рыхлить или разрабатывать грунт. Прицепной рыхлитель при этом отцепляют, а навесной поднимают. В зависимости от мощности двигателя и механических свойств мерзлого грунта число зубьев рыхлителя колеблется от 1 до 5, причем чаще всего пользуются одним зубом. Для эффективной работы тракторного рыхлителя на мерзлом грунте необходимо, чтобы двигатель имел достаточную мощность (100...180 кВт). Рыхлят грунт параллельными (примерно через 0,5 м) проходками с последующими поперечными проходками под углом 60...90° к предыдущим.

Рисунок 4. Схемы разработки мерзлых грунтов с предварительным рыхлением: а - рыхление клин-молотом; б - тракторным виброклиновым рыхлителем; 1 - автосамосвал; 2 - экскаватор; 3 - клин-молот; 4 – виброклин.

Мерзлый грунт, разрыхленный перекрестными проходками одностоечного рыхлителя, можно успешно разрабатывать тракторным скрепером, причем этот способ считается весьма экономичным и с успехом конкурирует с буровзрывным способом.

При разработке мерзлых грунтов с предварительной нарезкой блоками в мерзлом слое нарезают щели (рис. 5), разделяющие грунт на отдельные блоки, которые затем удаляют экскаватором или строительными кранами. Глубина прорезаемых в мерзлом слое щелей должна составлять примерно 0,8 глубины промерзания, так как ослабленный слой на границе мерзлой и талой зон не является препятствием для разработки экскаватором. В районах с вечно-мерзлыми грунтами, где подстилающий слой отсутствует, метод блочной разработки не применяют.

Рисунок 5. Схемы разработки мерзлых грунтов блочным способом: а, б - мелкоблочным способом; в, г - крупноблочным; 1 - удаление снежного покрова; 2, 3 - нарезка блоков мерзлого грунта баровой машиной; 4 - разработка мелких блоков экскаватором или бульдозером; 5 - разработка талого грунта; 6 - разработка крупных блоков мерзлого грунта трактором; 7 - то же, краном.

Расстояния между нарезанными щелями зависят от размеров ковша экскаватора (размеры блоков должны быть на 10... 15% меньше ширины зева ковша экскаватора). Блоки отгружают экскаваторами с ковшами вместимостью от 0,5 м и выше, оборудованными преимущественно обратной лопатой, так как выгрузка блоков из ковша прямой лопатой очень затруднена. Для нарезки щелей в грунте применяют различное оборудование, устанавливаемое на экскаваторах и тракторах.

Нарезать щели в мерзлом грунте можно с помощью роторных экскаваторов, у которых ковшовый ротор заменен фрезерующими дисками, снабженными зубьями. Для этой же цели применяют дискофрезерные машины (рис. 6), являющиеся навесным оборудованием к трактору.

Рисунок 6. Дискофрезерная землеройная машина: 1 - трактор; 2 - система передачи и управления рабочим органом; 3 - рабочий орган машины (фреза).

Наиболее эффективно нарезать щели в мерзлом грунте баровыми машинами (рис. 5), рабочий орган которых состоит из врубовой цепи, смонтированной на базе трактора или траншейного экскаватора. Баровые машины прорезают щели глубиной 1,3 ... 1,7 м. Достоинством цепных машин по сравнению с дисковыми является относительная легкость замены наиболее быстро изнашивающихся частей рабочего органа - сменных, вставляемых во врубовую цепь зубьев.